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The fast development of Deepfake has brought huge current and potential future negative impacts to our
daily lives. As the circulating popular Deepfake videos have become difficult to be distinguished by
human eyes, various Deepfake detection approaches have been attempted using deep learning models.
However, even though some existing detection methods have achieved reasonable detection perfor-
mance with respect to the statistical evaluation metrics, the actual underlying Deepfake forensic traces
have been barely discussed. In this study, we investigate the special forensic noise traces within Deepfake
image frames and propose a noise-based Deepfake detection model approach using a deep neural
network. We train a Siamese noise extractor using a novel face-background strategy to investigate
different forensic noise traces of a synthesized face area and an unmodified background area. A similarity
matrix module is proposed to analyze the forensic noise trace difference between a cropped face square
and a cropped background square from a candidate image frame for the Deepfake detection task. As a
result, our proposed model trained on the high-quality Celeb-DF dataset has achieved state-of-the-art
performance with 99.15% accuracy and 99.92% AUC score on the in-dataset testing set and 88.95% AUC
score on the highly difficult unknown-attack Deepfake video dataset. Furthermore, the visualization of
the Deepfake forensic noise traces has shown the explicit distinction between synthesized faces and any
unmodified area. We believe that the visualized evidence could provide better proof of Deepfake
detection results rather than simply the statistical evaluation numbers.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Have you ever seen the video of a Deepfake synthesized Barack
Obama giving a speech insulting Donald Trump in 2018 that is
widely spread on YouTube1? Without knowing the truth that the
face is synthesized using Jordan Peele's, you would possibly get
tricked and believe it to be genuine. Deemed to be the most serious
artificial intelligence threat in 2020 (ScienceDaily, 2020), Deepfake
has become popular and been frequently appeared. Deepfake is
firstly introduced by the Reddit user ‘deepfakes’ in 2017, which
refers to a facial synthesis technique that completes face-swapping
operation and generates hyper-realistic fake videos using deep
neural networks (Chawla, 2019; Maras and Alexandrou, 2019).
Despite the positive effects of Deepfake that could benefit human
lives in various industries such as movies, educational media and
digital communications (Westerlund, 2019), huge consequences
ow@cs.hku.hk (K.P. Chow).
L0.

Ltd. This is an open access article u
have gradually appeared in the negative aspects. Potential major
victims under Deepfake threats include society, political system
and business (Westerlund, 2019), and even anyone can become a
target by Deepfake in the future (Melville, 2019; Kietzmann et al.,
2020; Tolosana et al., 2020). As the quantity and quality of the
online-circulating Deepfake videos become higher, it is hard to
manually solve the Deepfake detection task via human eyes.
Therefore, preventing high-quality and unseen Deepfake attacks
from affecting the human lives is highly desired.

Several Deepfake video datasets have been constructed and
released publicly accessible on the Internet within the past few
years, and they are categorized into two generations based on their
qualities by Tolosana et al. (2020) in a survey. However, due to stark
contrasts in visual quality of the existing Deepfake datasets to the
actual Deepfake videos circulated on the Internet, prior Deepfake
detection algorithms trained on the existing constructed datasets
may not perform well against the unknown Deepfake attacks. Li
et al. (2020a) released a new high-quality Deepfake dataset with
over 5000 videos, namely Celeb-DF, generated using an improved
Deepfake synthesis method in 2020. Meanwhile, a set of 518 high-
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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quality and highly difficult Deepfake videos generated with
mysterious techniques was released by Li et al. and has failed many
existing state-of-the-art Deepfake detection algorithms. Consid-
ering the large quality and difficulty gap between the regular Celeb-
DF video dataset and the challenging 518 highly difficult ones, the
latter is more proper to play the role of unknown future Deepfake
attack, which has been largely used as the benchmark testing set
for evaluating Deepfake detection algorithms trained with the
existing high-quality datasets.

Various approaches have been attempted for Deepfake detec-
tion using deep learning techniques. However, they mostly rely on
the computer vision techniques and the magic black box of deep
neural networks. To our knowledge, no approach have utilized
forensic noise traces for Deepfake detection except the ones uti-
lizing Photo Response Non-Uniformity (PRNU) (Lukas et al., 2006)
but failed to achieve satisfied performance. Furthermore, although
recent computer vision methods are able to visualize the extracted
image feature heatmaps that the Deepfake detection decisions are
made based on, the displayed heatmaps appear to be similar and
indistinguishable for both real and fake faces. In other words, there
is nomodel up to date that is able to probe the underlying Deepfake
traces and perform detection accordingly. Moreover, many
methods have ignored the importance of video keyframes for
Deepfake detection, leading to huge information loss.

As the hyper-realistic Deepfake synthesized videos become hard
to find evidence visually, forensic noise traces are left within the
face area whenever there are modifications. Meanwhile, the back-
ground area in a Deepfake video is usually unchanged since the goal
is face-swapping, and the less the original video is modified, the
more authentic it remains. In this paper, we present a novel noise-
based Deepfake detection method that mainly focuses on the un-
derlying forensic noise traces of the Deepfake videos. In specific, we
utilize the publicly ignored key image frames within the videos and
propose a novel face-background strategy that crops the face
square and a furthest background square from each video key-
frame. We study the different noise trace patterns between fake
faces and unchanged real faces while the background squares are
always unmodified and authentic. We adopt the Siamese (Bromley
et al., 1993) architecture and train the improved DnCNN Denoiser
(Zhang et al., 2017) as a noise trace extractor to probe the under-
lying Deepfake forensic noise traces from video keyframes. We
propose a similarity matrix (Huang et al., 2018) to compare and
analyze the similarity between noise traces of the face square and a
background square from each image frame. A Deepfake manipu-
lated face is expected to have respectively different noise traces
from the background square since the background remains un-
changed all the time. The ultimate Deepfake detection decision is
made based on the similaritymatrix value after further refining and
projections in the deep neural network. As a result, our proposed
approach achieves a frame-level accuracy of 99.15% and an area
under the receiver operating characteristic (ROC) curve (AUC) score
of 99.92% over the regular Celeb-DF testing dataset and an 88.95%
frame-level AUC score over the high-quality and high-difficulty
unknown Deepfake attack testing dataset with 518 videos, out-
performing the existing state-of-the-art Deepfake detection algo-
rithms in the comparative tests. Furthermore, we have visualized
the Deepfake noise traces that have shown strong evidence to
support the Deepfake detection results of our proposed model to
distinguish fake videos and real videos.

The main contributions of this study include:

C Besides the detection methods using PRNU that have failed,
our study is the first time to raise the idea of Deepfake
detection in the perspective of forensic noise traces that
2

achieves good detection performance on the highly difficult
Deepfake videos.

C Our proposed inductive approach using the novel face-
background strategy and similarity matrix achieves the
state-of-the-art performance on both normal training and
testing datasets and the high-quality and highly difficult
Deepfake video dataset that plays the role of an unknown
future attack.

C Different from the existing computer vision Deepfake
detection approaches that display indistinguishable heat-
maps for both real and fake faces, we successfully visualize
the Deepfake forensic noise traces to support the satisfactory
detection performance.

The rest of the paper is organized as follows. Section 2 discusses
the related work of our study, including the Deepfake video gen-
eration process and the existing work that has utilized computer
vision techniques and forensic noise traces for Deepfake detection.
Section 3 introduces the main methodology and workflow of our
proposed deep learning model. Section 4 presents experimental
results of the proposed approach and the comparative models and
analyzes the results accordingly. Finally, section 5 concludes the
paper.

2. Related work

We brief the background work of Deepfake in this section.
Specifically, we first introduce the two popular Deepfake genera-
tion methods that are widely used. Thereafter, we enumerate the
existing Deepfake detection work including the unsuccessful at-
tempts using noise traces.

2.1. Deepfake generation methods

The term ‘Deepfake’ is raised by the Reddit user ‘deepfakes’
along with the released source code in 2017. The main architecture
of Deepfake is an autoencoder (Kingma et al., 2014) with a shared
encoder and two individual decoders composed of convolutional
neural network backbones. The shared encoder takes charge of
learning the common facial features regardless of facial identity,
while the two individual decoders each is trained to construct faces
of a unique identity. In specific, in order to swap a source facial
identity onto a target face, the well-trained autoencoder model
takes in the target face as an input and passes the encoder-learned
facial features to the unique decoder that is corresponding to the
source facial identity. The decoder generates a face with the iden-
tity of the source person while maintaining the facial expression
and action of the input target face. Another main architecture that
is recently frequently adopted to improve face-swapping quality is
the generative adversarial network (GAN) (Goodfellow et al., 2014).
GAN is composed of a generator and a discriminator that battle
with each other to gradually improve the output quality during the
training process. Introducing the discriminator to Deepfake gen-
eration makes the synthesized faces more authentic by periodically
training the generator to fool the discriminator with the generated
faces. The synthesized face is inserted back into the original image
frame with further smoothing and blur techniques to clean up the
obvious Deepfake traces.

2.2. Deepfake detection approaches

The computer vision Deepfake detection approaches mainly
focus on the image features. Early approaches mostly utilize the
convolutional neural network (CNN) backbone and rely more on its



Fig. 1. Workflow of the proposed Deepfake detection model. Cropped keyframe face squares and background squares are passed through the Siamese Network for forensic noise
trace extraction, then the two sets of noise traces are computed the similarity matrix. The result is then passed through a stack of convolutional layers with max pooling operations
and fully connected layers to further refine the features. In the end, a softmax function is applied to perform Deepfake detection.

2 https://pypi.org/project/dlib.
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image processing ability. Recent computer vision methods tend to
include global features for performance enhancement. Two-Stream
(Luo et al., 2021) utilizes two streams of Xception (Chollet, 2017)
backbones and studies both RGB frames and high-frequency
frames, respectively, and further analyzes the cross-modal re-
lations between the two streams. TheMATmodel (Zhao et al., 2021)
adopts EfficientNetB4 as the backbone for Deepfake detection and
introduces the idea of attentionmechanism to study global features
within different local parts of the image frame.

To our knowledge, the existing noise-based Deepfake detection
attempts are mainly based on the Photo Response Non-Uniformity
(PRNU), a noise pattern created by small factory defects in the light-
sensitive sensors of a digital camera (Lukas et al., 2006). PRNU has
been frequently adopted in source device identification (Marra
et al., 2017; Saito et al., 2017) and source anonymization (Picetti
et al., 2020). Unfortunately, no PRNU-based Deepfake detection
work has shown strong evidence of the ability of PRNU noise on
Deepfake detection. Koopman et al. (2018) evaluated the mean
normalised cross correlation score of PRNU noise per video and
performed a preliminary experiment to distinguish Deepfake
videos from authentic videos with only 10 videos in total given the
correct video labels. However, such an attempt is not available
without knowing the correct labels in this reported work. Weever
and Wilczek (de Weever and Wilczek, 2020) tried several experi-
ments computing the correlation of the PRNU noise and concluded
that none of the attempted PRNU noise analyses had led to a def-
inite proof of Deepfake or authenticity. As a conclusion, the PRNU
noise pattern has a strong ability for device identification related
studies, but it is not a good forensic noise tracing material for
Deepfake detection. Therefore, our study is the first to successfully
achieve good performance using forensic noise trace based Deep-
fake detection and visualize the extracted Deepfake forensic noise
traces.

3. Methodology

The workflow of our approach as shown in Fig. 1 mainly
consists of the following parts: face-background strategy, Siamese
noise trace extraction, and noise similarity analysis. The face-
background square pairs are firstly extracted from the video
key image frames and fed to the Siamese noise extractor. The
Siamese noise extractor extracts the Deepfake forensic noise
3

traces from the face and background squares, respectively, and
the noise traces are then analyzed via similarity matrix for the
Deepfake detection results.

3.1. Face-background strategy

The videos we commonly see are usually under video
compression for the purpose of space saving. As a result, three
types of image frames are derived, namely, keyframe (I-frame), P-
frame, and B-frame. Only the keyframes among all image frames
carry complete image information with the largest sizes within a
compressed video (Vijayanagar, 2020). To acquire the image frames
with high quality and complete information, we extract only the
key image frames from the videos using FFmpeg when training our
model for optimal Deepfake detection performance.

The major effect of Deepfake is the facial identity swap. There-
fore, Deepfake usually only modifies the face areawhen performing
face-swapping, and most of the background area remains un-
changed. For each keyframe, we locate the face position using the
dlib library2 and crop the face square and a background square that
has the largest Euclidean distance from the face square. This face-
background strategy (as shown in Fig. 2) of locating the furthest
background area guarantees to crop the background square that is
the least likely to be modified by Deepfake even though the back-
ground area close to the face may be modified along with the target
face. In other words, for each face-background pair, the cropped
background square is always unmodified while the face squaremay
be manipulated by Deepfake with noise traces left behind.

3.2. Siamese noise trace extraction

Since being firstly introduced in 1993 for signature verification,
the Siamese Network (Bromley et al., 1993) has been frequently
utilized for feature comparison (Chopra et al., 2005). We adopt the
Siamese design for noise trace extraction from the face squares and
background squares where the two branches share the same
weights. In particular, for a face-background pair, the face square
and the background square are each passed through one branch of
the Siamese architecture. In each Siamese branch, a pre-trained

https://pypi.org/project/dlib


Fig. 2. Keyframes are extracted from the Deepfake video, then the face and background squares are cropped from each keyframe. The face square in a keyframe is detected and
cropped using the dlib library, and a background square with the same size and having the furthest Euclidean distance from the detected face within the image frame is found and
cropped.

Fig. 3. The architecture of the improved DnCNN denoiser for Deepfake forensic noise
trace extraction. The input face or background is passed through a combination of a
convolutional layer and a ReLU activation layer, followed by 18 repeated blocks of
convolution, batch normalization, and ReLU activation layers, and a convolutional layer
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DnCNN denoiser is adopted and improved for Deepfake forensic
noise trace extraction.

Classical denoisers share the same drawbacks that they mostly
involve a convex optimization problem that is time consuming and
cannot handle images with unknown noise levels. Besides, most
existing denoisers perform denoising directly without finding out
the noise. Zhang et al. (2017) proposed a DnCNN denoiser that is
composed of mainly multiple layers of convolutional neural net-
works and handles denoising over unknown noise levels by
extracting the underlying noise. The DnCNN denoiser structure, as
shown in Fig. 3, was further utilized by Cozzolino and Verdoliva
(2018) for the camera model fingerprint study that can perform
source device classification based on the extracted noise. In this
study, the face and background squares are passed through the
improved DnCNN model to extract the underlying noise traces
instead of eliminating them. We exploit the pre-trained weights of
the DnCNN that can firstly extract a general level noise. Then, we
train it along with further similarity matrix and classification
module to enforce additional restrictions for weight updating and
achieve Deepfake forensic noise trace extraction that serves for our
Deepfake detection purpose.

For a real image frame that is unmodified, it contains the same
noise pattern everywhere within the image, in other words, no
Deepfake forensic noise trace. On the other hand, a Deepfake image
frame has the face area synthesized such that the underlying noise
pattern of the face area is different from that of the unmodified
background area. Since the two branches of the Siamese architec-
ture share the weights on noise trace extraction, different noise
patterns are extracted under the same noise trace extraction pro-
cess from the face and background squares of the Deepfake syn-
thesized videos, while the same noise patterns can be found within
the face and background squares of the real videos. The Siamese
architecture is coded as one single network in implementation
since both branches share the same set of network weights. The
extracted forensic noise traces from the face and background
squares are further fed to a similarity matrix design for noise trace
pattern comparison and Deepfake detection decision making.
in the end to generate the output noise.
3.3. Noise similarity analysis

Considering the forensic noise traces for the unmodified area
are always clean, the Deepfake manipulated faces are expected to
have complicated noise traces. We propose the similarity matrix
idea on the extracted face and background noise traces for the noise
similarity analysis. In specific, the similarity matrix is implemented
as the inner product of the two noise representations to find out the
4

correspondence between every two vector entries. Following the
convention, multiplication is more powerful to find relations be-
tween deep neural network feature matrices than summations.
When performing matrix summation, only entries in the same
position can be summed up and thus the correspondence is weaker
than conducting a product operation. The similarity between col-
umn i of the face noise trace matrix and column j of the background



T. Wang, M. Liu, W. Cao et al. Forensic Science International: Digital Investigation 42 (2022) 301395
noise trace matrix, namely entry Si,j, follows

Si;j ¼
Fi � BT

j
�
�Fik22 �

�
�Bjk22

; (1)

where F and B are the extracted noise traces for the face and
background squares, respectively.

We make the final Deepfake detection decision based on the
similarity matrix result. Therefore, we apply 2D convolutions with
fully connected layers to the proposed model to refine the domi-
nant similarity entries, and compute the probability that the input
face is Deepfake synthesized and tune the model by

LCE ¼ �S2
i¼1tilog pi; (2)

where ti is the ground truth value and pi is the Softmax prediction
for class i upon the final output from the last fully connected layer.
4. Experiments

In this section, we first introduce the dataset utilized in the
experiment. Then, we describe the experiment settings. Thereafter,
we list and briefly introduce the state-of-the-art models employed
for comparative tests. Thenceforth, we evaluate the models on the
testing datasets following the identical experiment settings and
analyze the experiment results. In the end, we visualize the
extracted Deepfake forensic noise traces using our well-trained
model.
4.1. Dataset

The purpose of the Deepfake detection task is to prevent future
unknown Deepfake attacks from affecting human lives with the
help of the existing Deepfake video datasets. As the actual Deepfake
videos circulated on the Internet have become more authentic and
harder to distinguish, it is significant to adopt a Deepfake dataset
with good quality for deep detection models training. Tolosana
et al. (2020) categorized the existing Deepfake video datasets into
two generations with respect to the qualities. Typical datasets in
the first one are UADFV (Li and Lyu, 2019), Deepfake TIMIT
(Korshunov and Marcel, 2018), and FaceForensicsþþ (FFþþ) (R €o
ssler et al., 2019) datasets. By contrast, DeepFakeDetection (DFD)
(Dufour and Gully, 2019), Celeb-DF (Li et al., 2020a), and Deepfake
Detection Challenge (DFDC) (Dolhansky et al., 2019) datasets are in
the second generation. To be more specific, the Celeb-DF dataset,
constructed by an improved Deepfake synthesis method, is of the
highest quality while the other ones all contain a substantial
amount of obvious fake videos that can be easily discovered by
human eyes. We thus selected the high-quality Celeb-DF dataset to
train our proposed model in this study.

The Celeb-DF dataset contains 712 real videos and 5299 fake
ones that have good qualities and a certain degree of difficulty to
distinguish. Besides, there is a set of 518 high-quality and highly
difficult videos (178 real and 340 fake) that contains mysterious
synthesis tricks and has challenged all state-of-the-art Deepfake
detection models with suboptimal performance. Thereby, it can be
regarded as a potential future threat for cross-dataset detection
model testing. In order to overcome the possible unknown Deep-
fake threats in the future, we evaluated our proposed noise-based
Deepfake detection model over the Celeb-DF normal dataset after
sampling balanced datasets for both training and testing, and
further tested the performance over the unbalanced set of 518 high-
quality and highly difficult unknown attack Deepfake videos.
5

4.2. Experiment settings

The proposed model is trained on a balanced preprocessed
keyframe dataset as described in Section 4.1 for real and fake, at a
ratio of 8:1:1 for training, validation, and testing set. In detail, a
total of 45,820 face-background pairs are utilized in the training
process. The lengths for the input face and background squares are
resized to 64 for consistency in the training process. When refining
the similarity matrix, each 2D convolution is set with kernel size of
3 and stride of 1 and each max pooling operation is set with kernel
size of 2 and stride of 2. Each combination of convolutional layer
and max pooling operation decreases the feature dimension by
half. The fully connected layers each decreases the feature dimen-
sion fourfold so that the softmax function can be properly applied.
While achieving a considerably high performance over the normal
testing dataset, we further validated our well-trained Deepfake
detection model on the unknown future attack dataset of 518
videos that has high quality and high difficulty. We evaluated the
overall Deepfake detection performance using accuracy and AUC
score at frame level for the balanced testing datasets. Depending on
the testing set distribution, a high value of the accuracy can cover
up potential problems within the model. The AUC score is calcu-
lated by the area under the ROC curve by adjusting all threshold
values throughout the whole range from 0 to 1, plotting over the
true positive rate and false positive rate values, which could further
prove the robustness of ourmodel. Therefore, we used only the AUC
scores for model evaluation upon the unbalanced unknown attack
challenging testing set.

4.3. Comparative models

We considered the existing state-of-the-art Deepfake detection
algorithms for comparisons to our exhibited approach. We chose
the Deepfake detection algorithms that have source code published
and reproducible for training and testingwith the same experiment
settings as ours while maintaining their optimal parameter settings
whenever applicable. For the rest selected detection algorithms
that either have no source code published or the source code are
unreproducible in experiments, we directly employed the pub-
lished model checkpoints or the reported evaluation results if
applicable. A summary of the methods information considered for
comparative tests is as listed in Table 1, including the model name,
released date, source code availability, and how the model is
evaluated (trained, checkpoint evaluation, or reported result
adoption) in comparative tests for each selected method. The
comparative test models are briefly introduced in the following
paragraphs.

MesoNet (Afchar et al., 2018) focuses on the mesoscopic prop-
erties of image frames using CNN based architectures. The pro-
posed model is trained and tested on 175 Internet-collected rushes
of Deepfake videos at frame-level using keyframes. We trained and
evaluated the MesoNet model on our dataset, which is based on
complicated Inception modules (Szegedy et al., 2015) and claims to
achieve the best performance on Deepfake videos as reported.

Capsule (Nguyen et al., 2019) model adopts capsule structures
(Sabour et al., 2017) and utilizes much fewer VGG19 (Simonyan
et al., 2015) based network parameters than traditional CNNs
with similar performance. The model is trained on the FFþþ
dataset (R €o ssler et al., 2019) in the published work. An updated
version with better performance is published and we trained and
tested the updated Capsule model on our dataset for a fair
comparison.

DSP-FWA (Yang et al., 2019), an improved method based on the
spatial pyramid pooling module (He et al., 2015) with CNN based
ResNet (dd, 2016) as the backbone, can handle Deepfake videos



Table 1
Summary of the selected Deepfake detection approaches for comparison tests. Information includes comparative model name, released date, source code availability, and how
the model is evaluated in comparative tests. In general, models with source code are trained and tested on our dataset, while models with no source code are either tested on
the given checkpoints or adopted the reported performance.

Models for Comparison Released
Date

Source Code Availability Evaluation Method

MesoNet (Afchar et al., 2018) Sept. 2018 Published source code available. Trained and tested on our dataset.
Capsule (Nguyen et al., 2019) Oct. 2019 Published source code available. Trained and tested on our dataset.
DSP-FWA (Yang et al., 2019) Nov. 2019 No published source code but has checkpoint

released.
Adopt the experiment result reported on the Celeb-DF test
dataset.

Ensemble (Bonettini et al., 2021) Apr. 2020 Published source code available. Train and test on our dataset.
DFT-MF (Jafar et al., 2020) Apr. 2020 No published source code and no checkpoint

released.
Adopt the experiment result reported on the Celeb-DF test
dataset.

FFD (Dang et al., 2020) June 2020 Published source code available. Trained and tested on our dataset.
Face X-ray (Li et al., 2020b) June 2020 No published source code and no checkpoint

released.
Adopt the experiment result reported on the Celeb-DF test
dataset.

Multi-Attention (Zhao et al.,
2021)

Mar. 2021 No published source code and no checkpoint
released.

Adopt the experiment result reported on the Celeb-DF test
dataset.

Two-Stream (Luo et al., 2021) Mar. 2021 Published source code available. Trained and tested on our dataset.
TAR (Lee et al., 2021) May 2021 Published source code available. Trained and tested on our dataset.
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with different resolution qualities as reported. The model is trained
with self-generated Deepfake dataset and only a checkpoint for the
pre-trained model weights is released. This approach is evaluated
by Li et al. on the high-quality and highly difficult unknown attack
Deepfake testing dataset, and we adopted the reported experiment
performance result for the comparative test.

Ensemble (Bonettini et al., 2021) stands for the ensemble of
different pre-trained CNN basedmodels. Thework takes CNN based
EfficientNetB4 (Tan et al., 2019) as the backbone and proposes the
attention mechanism for performance improvements. The model
utilizes triplet Siamese Network architecture and takes groups of 3
inputs for training, namely, an anchor, a positive sample with the
same label as the anchor, and a negative sample with the opposite
label to the anchor. The source code for the Ensemble model is
publicly available, and we trained and tested its performance on
our dataset for performance comparison.

DFT-MF (Jafar et al., 2020) published in 2020 focuses specifically
on the mouth features and uses CNN based model to detect by
isolating, analyzing, and verifying lip and mouth movements. The
authenticity classification is based on a number of fake frames in a
video with respect to words per sentence, speech rate, and frame
rate. Themodel is trained and evaluated on Celeb-DF and Deepfake-
TIMIT datasets separately. No source code and checkpoint for DFT-
MF is published online, and we directly adopted its reported results
as it is trained and tested on the Celeb-DF dataset.

FFD (Dang et al., 2020) refers to a CNN based Deepfake detection
network that utilizes the attention mechanism to process the
feature maps and adopts the previous state-of-the-art Xception (R
€o ssler et al., 2019) architecture as the backbone, claiming to
outperform the backbone. Xception was introduced for Deepfake
detection and has achieved considerable performance when the
FFþþ dataset was released in 2019. It refers to a detection method
based on the XceptionNet model (Chollet, 2017). We trained and
tested the state-of-the-art FFD model on the same dataset as ours
for performance comparison while maintaining its default param-
eter settings for optimal performance.

Face X-ray (Li et al., 2020b) simulates a medical x-ray exami-
nation by revealing whether the input image can be decomposed
into the blending of two images from different sources. The
blending boundary appears for a forged image while no blending is
detected for a real image. The approach is trained on FFþþ. No
source code or pre-trained model weight checkpoint is published
up to the time when this paper is written, and we directly
employed the performance results on the same testing dataset
reported by the authors for comparison with our approach.
6

Multi-Attention (Zhao et al., 2021) uses the CNN based Effi-
cientNetB4 network as the backbone and applies multiple head
attention to analyze and focus on different local parts of the input
image frame and zoom in the artifacts in shallow features for an
enhancement in Deepfake detection performance. The model is
trained on FFþþ and no reproducible source code or pre-trained
weight is released up to date on the Internet. We directly utilized
the experiment performance result on the same testing dataset for
comparison with our approach.

The Two-Stream (Luo et al., 2021) approach constructs two
streams of Xception backbones andmainly analyzes the RGB frames
and high-frequency frames, respectively. The cross-modal relations
between the two streams are studied and utilized for Deepfake
detection task. The model is trained on FFþþ and source code is
publicly available. Thus, we trained and tested the Two-Stream
model on our utilized dataset with identical experiment settings.

TAR (Lee et al., 2021) is one of the latest Deepfake detection
model reporting significantly higher performance over the state-of-
the-art methods. The model applies transfer learning based on
autoencoders with residual blocks. A Facilitator module is utilized
to force and divide the latent space between the real and fake
embeddings. The model is trained on the FFþþ dataset and self-
collected datasets. Source code of TAR is publicly available on the
Internet, so we trained and tested the TAR model on our dataset
while maintaining its default optimal training setting parameters.
4.4. Evaluation results

We first trained our proposed noise-based Deepfake detection
model with our balanced training dataset and evaluated the per-
formance on the testing dataset. Then, we performed Deepfake
detection using the well-trained model on the high-quality and
highly difficult unknown attack dataset with 518 videos. As a result,
our approach achieves high frame-level accuracy of 99.15% and AUC
score of 99.92% on the normal testing set. Models with source codes
published for comparative tests are trained and tested on the same
dataset as ours while maintaining their original optimal experi-
ment settings when possible, and the evaluation results on the
normal testing dataset are as shown in Table 2. As a result, our
Deepfake detection approach outperforms all adopted open-source
state-of-the-art models after training and testing on the same
dataset.

Besides the normal testing dataset, the high-quality and highly
difficult set of 518 unknown attack videos have failed many well-
known Deepfake detection algorithms (Li et al., 2020a). We



Table 2
Frame-level comparative tests accuracy (%) and AUC scores (%) on the normal testing
dataset.

Model Names Accuracy AUC Score (%)

MesoNet (Afchar et al., 2018) 92.36 97.82
Capsule (Nguyen et al., 2019) 99.02 99.83
FFD (Dang et al., 2020) 98.69 99.92
Ensemble (Bonettini et al., 2021) 70.77 78.15
Two-Stream (Luo et al., 2021) 92.27 98.19
TAR (Lee et al., 2021) 50.00 50.00
Our Approach 99.15 99.92

Table 3
Frame-level comparative tests AUC scores (%) on the unknown attack challenging
Deepfake dataset.

Model Name AUC Score (%)

MesoNet (Afchar et al., 2018) 70.57
Capsule (Nguyen et al., 2019) 77.55
DSP-FWA (Yang et al., 2019) 64.60
Ensemble (Bonettini et al., 2021) 80.83
DFT-MF (Jafar et al., 2020) 71.25
FFD (Dang et al., 2020) 81.05
Face X-ray (Li et al., 2020b) 80.58
Multi-Attention (Zhao et al., 2021) 67.44
Two-Stream (Luo et al., 2021) 84.19
TAR (Lee et al., 2021) 50.00
Our Approach 88.95

T. Wang, M. Liu, W. Cao et al. Forensic Science International: Digital Investigation 42 (2022) 301395
further evaluated our well-trained model and it has achieved a
state-of-the-art frame-level AUC score of 88.95% on the unknown
attack Deepfake dataset with 518 videos. The comparative models
trained on the same dataset as listed in Table 1 are also evaluated on
the 518 videos for further comparison with our approach. For the
rest methods as listed in Table 1 without source code published, we
either directly utilized the reported performance on the 518 videos
or evaluated the performance using the provided pre-trained
checkpoints if applicable. As Table 3 shown, the proposed noise-
based Deepfake detection method outperforms all state-of-the-
art models on the challenging unknown attack Deepfake dataset
with 518 videos. A more vivid look of the AUC score comparisons
among all Deepfake detection models on the high-quality and
highly difficult unknown attack testing dataset is shown in Fig. 4.
The ROC curves of our model when tested on the normal testing
dataset and on the unknown attack challenging dataset are shown
in Fig. 5. Both curves have shown reasonable behaviors, which
Fig. 4. Bar plot AUC score (%) performance comparisons of the comparative models.
The proposed model achieves the state-of-the-art performance over all other models.
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further prove the robustness of our proposed model.
As listed in Tables 2 and 3, most models have performed well on

the normal testing dataset after training on the corresponding
training dataset except the Ensemble method, while our approach
still achieves a slightly better performance than all of them. In
addition, Ensemble (Bonettini et al., 2021), FFD (Dang et al., 2020),
Face X-ray (Li et al., 2020b), Two-Stream (Luo et al., 2021) and our
proposed model have achieved the AUC scores over 80% on the
challenging testing set, while ours reaches the highest over 85%.
The fact that the Ensemble method doesn't perform well on the
normal testing dataset might be because of an overfitting by the
model on the detection of fake videos while neglecting the work on
the real videos, and therefore fails on a balanced normal testing
dataset but still achieves good performance on the unbalanced
challenging testing dataset. The TAR (Lee et al., 2021) is proved to
be very time-consuming at a day-level training process while all
other models' training processes are at hours level. Moreover, the
TARmodel after training with default settings labels all videos to be
authentic, which causes the bad performance as shown in Tables 2
and 3. As a matter of fact, since all Deepfake faces contain the un-
derlying forensic noise traces regardless of different manipulation
techniques, our proposed approach is more generalizable on the
unknown future Deepfake attacks while the existing methods are
somehow under higher potential risks of overfitting on the training
dataset.

4.5. Forensic noise trace visualization

Although some state-of-the-art Deepfake detection models
have exhibited reasonably good performance upon the testing
datasets. To our knowledge, none of them have shown the ability to
extract and visualize the Deepfake forensic traces as a straightfor-
ward evidence. In specific, recent work is able to display the feature
heatmap of which the Deepfake detection decision depends on.
However, the heatmaps are for the purpose of feature localization,
and they tend to be always similar and indistinguishable for both
real and fake faces.

In this study, we trained a Deepfake noise trace extractor and
truly extracted the underlying traces within our proposed model.
Besides outperforming the state-of-the-art approaches statistically,
we further visualized the extracted Deepfake forensic noise traces
from a sample testing dataset of face-background pairs. We froze
the weights of the noise trace extractor within the Siamese archi-
tecture and displayed the extracted Deepfake forensic noise traces
of each face background pairs in Fig. 6.

As Fig. 6 shown, the top two rows display the extracted Deep-
fake forensic noise traces of real faces and backgrounds, while the
bottom two rows exhibit that of the fake ones. Every two columns
contain a pair of cropped face and background squares along with
the corresponding noise traces on the row below them. The fake
face squares demonstrate obvious Deepfake forensic noise traces
with complicated traces displayed while the real ones have nearly
no forensic noise traces on the contrary. The background squares, as
expected, have shown clean figures with no Deepfake noise trace.
In conclusion, the more complicated the noise traces of a face is
displayed, the more likely the face is from a Deepfake video. With
the help of the visualized noise traces, it is convincing to point out
the particular positions on the faces that are synthesized by
Deepfake, which further supports the satisfactory statistical
Deepfake detection performance of our proposed model.

5. Conclusion

Deepfake has drawn considerable public attention as its po-
tential security risk is gradually recognized by the society. In this



Fig. 6. Visualization of the extracted Deepfake forensic noise traces. The two rows on the top display the extracted Deepfake forensic noise traces of real faces and backgrounds, and
the bottom two rows display the extracted Deepfake forensic noise traces of fake faces and backgrounds. Every two columns are a pair of cropped face and background squares
along with the corresponding noise traces on the row below them. The more colorful and more complicated the noise traces of a face is displayed, the more likely the face is from a
Deepfake video.

Fig. 5. ROC curves of the proposed model when tested on the normal testing dataset (left) and on the unknown attack challenging dataset (right).
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study, we present a state-of-the-art noise-based Deepfake detec-
tion model that investigates the underlying forensic noise traces of
Deepfake. The visualized noise traces have further shown prom-
ising evidence for the robustness of the proposed approach. Future
work will focus on improving the quality of the extracted forensic
noise traces and the Deepfake detection generalization perfor-
mance on diverse testing sets. Besides, due to computation limit,
input images are resized to 64 in this study. We plan to explore the
influence of different input image sizes in future work. We will also
work on defending our model against potential attacks with per-
turbations and distortions since our approach is noise-based. Lastly,
we wish to elaborate the noise-based model to video-level Deep-
fake detection in the future.
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