
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 176 (2020) 88–97

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the KES International.
10.1016/j.procs.2020.08.010

10.1016/j.procs.2020.08.010 1877-0509

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

24th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Malware Persistence Mechanisms
Zane Gittinsa, Michael Soltysa*

aCalifornia State University Channel Islands, Dept. of Computer Science, One University Drive, Camarillo, CA 93012, USA

Abstract

In the public imagination Cybersecurity is very much about malware, even though malware constitutes only part of all the threats
faced by Cybersecurity experts. However, malware is still one of the best methods to gain persistent access and control of a
target system. Malware is often combined with a well socially-engineered phishing attack that deceives a user to gain a foothold
on a system. Once the attakcer gains a beachhead in the victim’s network, it may be used to download additional payloads and
exploit vulnerabilities, to gain more control and access within a network. Using malware as their foothold, attackers are able to to
conduct reconnaissance, gather intelligence (e.g., exfiltration of intellectual property) or simply inflict damage or extortion (e.g.,
ransomware). All of this has to be done in a way that allows an attacker to retain access for as long as possible; the ability to do
so is called persistence, and this paper examines the different techniques used by malware to accomplish persistence in an ever
evolving landscape.

c© 2020 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Keywords: Malware Analysis; Malware Persistence; Incident Response;

1. Introduction

Malware authors continue to seek more advanced methods to maintain persistence on target systems. Persistence
is the method by which malware survives a reboot of the victim operating system, and is a key element of attacks
that require attackers to pivot through a network to accomplish their objective. Traditional methods for persistence
are increasingly detected by defenders and anti-virus software. This paper seeks to give an overview of a subset
of persistence mechanisms used by malware. We start with traditional persistence mechanisms used by criminal
elements, and then analyze more sophisticated persistence mechanisms believed to be utilized by nation state actors.
These more advanced persistence mechanisms are harder for defenders to identify, and are less likely to be discovered
by anti-virus tools. The terminology of Advanced Persistent Threat denotes a state-sponsored group with superior

∗ Corresponding author. Tel.: +0-000-000-0000 ; fax: +0-000-000-0000.
E-mail address: michael.soltys@csuci.edu, zane.gittins561@myci.csuci.edu

1877-0509 c© 2020 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

24th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Malware Persistence Mechanisms
Zane Gittinsa, Michael Soltysa*

aCalifornia State University Channel Islands, Dept. of Computer Science, One University Drive, Camarillo, CA 93012, USA

Abstract

In the public imagination Cybersecurity is very much about malware, even though malware constitutes only part of all the threats
faced by Cybersecurity experts. However, malware is still one of the best methods to gain persistent access and control of a
target system. Malware is often combined with a well socially-engineered phishing attack that deceives a user to gain a foothold
on a system. Once the attakcer gains a beachhead in the victim’s network, it may be used to download additional payloads and
exploit vulnerabilities, to gain more control and access within a network. Using malware as their foothold, attackers are able to to
conduct reconnaissance, gather intelligence (e.g., exfiltration of intellectual property) or simply inflict damage or extortion (e.g.,
ransomware). All of this has to be done in a way that allows an attacker to retain access for as long as possible; the ability to do
so is called persistence, and this paper examines the different techniques used by malware to accomplish persistence in an ever
evolving landscape.

c© 2020 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Keywords: Malware Analysis; Malware Persistence; Incident Response;

1. Introduction

Malware authors continue to seek more advanced methods to maintain persistence on target systems. Persistence
is the method by which malware survives a reboot of the victim operating system, and is a key element of attacks
that require attackers to pivot through a network to accomplish their objective. Traditional methods for persistence
are increasingly detected by defenders and anti-virus software. This paper seeks to give an overview of a subset
of persistence mechanisms used by malware. We start with traditional persistence mechanisms used by criminal
elements, and then analyze more sophisticated persistence mechanisms believed to be utilized by nation state actors.
These more advanced persistence mechanisms are harder for defenders to identify, and are less likely to be discovered
by anti-virus tools. The terminology of Advanced Persistent Threat denotes a state-sponsored group with superior

∗ Corresponding author. Tel.: +0-000-000-0000 ; fax: +0-000-000-0000.
E-mail address: michael.soltys@csuci.edu, zane.gittins561@myci.csuci.edu

1877-0509 c© 2020 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

capabilities and funding that gains unauthorized access to a system and remains undetected for an extended period
of time. These groups continue to attack their targets, even after failures, and often seek to deceive, deny, degrade,
destroy, and disrupt their adversaries. The advances in malware development made by sophisticated groups often make
their way into the hands of criminals, and then become commodities on the Internet available at little or no cost to less
sophisticated actors. In the following sections we discuss malware samples and the persistence techniques they use.
At the end of each section we map the persistence technique used to the Mitre ATT&CK framework. Mitre Att&ck is
an industry standard knowledge base for attack tactics and techniques.

2. Samples of persistent malware

In this section we are going to examine five representative samples of malware: Emotet, OceanLotus Symantec
DLL Sideloading, TrickBot, OceanLotus — Explorer-COM Hijack and Agent Tesla. We start each section with a
brief summary of the file type that carries the malware, together with its SHA256 signature. We concentrate the
analysis on the persistence mechanism.

2.1. Emotet

Word Document

SHA256:94926C8520049F7EE51334D699DFC63EB3DB7DDD9C29946161689E1E33BFC0F5

Emotet, also known as Geodo, is an information collection malware that is used to install additional malware on
victim systems. At the time of this writing, Emotet targets solely Microsoft Windows systems. Emotet was first seen
in 2014, and at that time its capabilities largely focused on stealing banking credentials by using web injections. Web
Injections are a technique where malware intercepts Windows API functions called by the browser. The process of
intercepting a function is called hooking. A commonly hooked function to perform web injections on Windows is
HttpSendRequestA. By intercepting this function, the malware can scan HTTP requests for sensitive data such as
credit card numbers and login details, and send these to the operator of the malware.

In the original versions of Emotet, initial access was gained through email campaigns. These emails often contained
the malicious executable, or contained a link that tempted victims to download and run a malicious executable [3].
The executable would manipulate victims’ browsers to show fake content overlaid on top of webpages. This technique
was used to steal credentials to sensitive accounts, such as login/password pairs for online banking websites.

Until 2015, Emotet was for sale on public forums [5], after which its sale became private. Since Emotet became
private, its capabilities have shifted to support reconnaissance, and serve as a first stage in an infection chain that
may lead to additional malware being installed on victim systems. Emotet has been observed deploying the banking
Trojans Dridex and Qakbot, information stealer Trickbot, as well as the Ryuk ransomware. Emotet still uses malicious
emails to gain initial access, however these emails now contain Microsoft Office documents with embedded Visual
Basic macros. Visual basic macros allow users to extend Microsoft Office applications by using the Visual Basic
programming language to automate tasks and provide a rich feature set. However, these macros are commonly used
by attackers to execute malicious code when an office document is opened by a user. PowerShell is a Windows
command-line shell built on top of the .NET Framework, which accepts and returns .NET objects. In the case of
recent versions of Emotet, these macros execute PowerShell code on the victim system, and this PowerShell code
downloads the next stage of the malware. Figure 1 displays the process.

Fig. 1. Steps that lead to an Emotet infection.

PowerShell can be called with the parameter -EncodedCommand with Base64 encoded PowerShell code as the
value. This is a powerful feature, but it is often abused by malware to hide the content of a payload within a Base64-
encoded string.

	 Zane Gittins et al. / Procedia Computer Science 176 (2020) 88–97� 89

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

24th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Malware Persistence Mechanisms
Zane Gittinsa, Michael Soltysa*

aCalifornia State University Channel Islands, Dept. of Computer Science, One University Drive, Camarillo, CA 93012, USA

Abstract

In the public imagination Cybersecurity is very much about malware, even though malware constitutes only part of all the threats
faced by Cybersecurity experts. However, malware is still one of the best methods to gain persistent access and control of a
target system. Malware is often combined with a well socially-engineered phishing attack that deceives a user to gain a foothold
on a system. Once the attakcer gains a beachhead in the victim’s network, it may be used to download additional payloads and
exploit vulnerabilities, to gain more control and access within a network. Using malware as their foothold, attackers are able to to
conduct reconnaissance, gather intelligence (e.g., exfiltration of intellectual property) or simply inflict damage or extortion (e.g.,
ransomware). All of this has to be done in a way that allows an attacker to retain access for as long as possible; the ability to do
so is called persistence, and this paper examines the different techniques used by malware to accomplish persistence in an ever
evolving landscape.

c© 2020 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Keywords: Malware Analysis; Malware Persistence; Incident Response;

1. Introduction

Malware authors continue to seek more advanced methods to maintain persistence on target systems. Persistence
is the method by which malware survives a reboot of the victim operating system, and is a key element of attacks
that require attackers to pivot through a network to accomplish their objective. Traditional methods for persistence
are increasingly detected by defenders and anti-virus software. This paper seeks to give an overview of a subset
of persistence mechanisms used by malware. We start with traditional persistence mechanisms used by criminal
elements, and then analyze more sophisticated persistence mechanisms believed to be utilized by nation state actors.
These more advanced persistence mechanisms are harder for defenders to identify, and are less likely to be discovered
by anti-virus tools. The terminology of Advanced Persistent Threat denotes a state-sponsored group with superior

∗ Corresponding author. Tel.: +0-000-000-0000 ; fax: +0-000-000-0000.
E-mail address: michael.soltys@csuci.edu, zane.gittins561@myci.csuci.edu

1877-0509 c© 2020 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

24th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Malware Persistence Mechanisms
Zane Gittinsa, Michael Soltysa*

aCalifornia State University Channel Islands, Dept. of Computer Science, One University Drive, Camarillo, CA 93012, USA

Abstract

In the public imagination Cybersecurity is very much about malware, even though malware constitutes only part of all the threats
faced by Cybersecurity experts. However, malware is still one of the best methods to gain persistent access and control of a
target system. Malware is often combined with a well socially-engineered phishing attack that deceives a user to gain a foothold
on a system. Once the attakcer gains a beachhead in the victim’s network, it may be used to download additional payloads and
exploit vulnerabilities, to gain more control and access within a network. Using malware as their foothold, attackers are able to to
conduct reconnaissance, gather intelligence (e.g., exfiltration of intellectual property) or simply inflict damage or extortion (e.g.,
ransomware). All of this has to be done in a way that allows an attacker to retain access for as long as possible; the ability to do
so is called persistence, and this paper examines the different techniques used by malware to accomplish persistence in an ever
evolving landscape.

c© 2020 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Keywords: Malware Analysis; Malware Persistence; Incident Response;

1. Introduction

Malware authors continue to seek more advanced methods to maintain persistence on target systems. Persistence
is the method by which malware survives a reboot of the victim operating system, and is a key element of attacks
that require attackers to pivot through a network to accomplish their objective. Traditional methods for persistence
are increasingly detected by defenders and anti-virus software. This paper seeks to give an overview of a subset
of persistence mechanisms used by malware. We start with traditional persistence mechanisms used by criminal
elements, and then analyze more sophisticated persistence mechanisms believed to be utilized by nation state actors.
These more advanced persistence mechanisms are harder for defenders to identify, and are less likely to be discovered
by anti-virus tools. The terminology of Advanced Persistent Threat denotes a state-sponsored group with superior

∗ Corresponding author. Tel.: +0-000-000-0000 ; fax: +0-000-000-0000.
E-mail address: michael.soltys@csuci.edu, zane.gittins561@myci.csuci.edu

1877-0509 c© 2020 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

capabilities and funding that gains unauthorized access to a system and remains undetected for an extended period
of time. These groups continue to attack their targets, even after failures, and often seek to deceive, deny, degrade,
destroy, and disrupt their adversaries. The advances in malware development made by sophisticated groups often make
their way into the hands of criminals, and then become commodities on the Internet available at little or no cost to less
sophisticated actors. In the following sections we discuss malware samples and the persistence techniques they use.
At the end of each section we map the persistence technique used to the Mitre ATT&CK framework. Mitre Att&ck is
an industry standard knowledge base for attack tactics and techniques.

2. Samples of persistent malware

In this section we are going to examine five representative samples of malware: Emotet, OceanLotus Symantec
DLL Sideloading, TrickBot, OceanLotus — Explorer-COM Hijack and Agent Tesla. We start each section with a
brief summary of the file type that carries the malware, together with its SHA256 signature. We concentrate the
analysis on the persistence mechanism.

2.1. Emotet

Word Document

SHA256:94926C8520049F7EE51334D699DFC63EB3DB7DDD9C29946161689E1E33BFC0F5

Emotet, also known as Geodo, is an information collection malware that is used to install additional malware on
victim systems. At the time of this writing, Emotet targets solely Microsoft Windows systems. Emotet was first seen
in 2014, and at that time its capabilities largely focused on stealing banking credentials by using web injections. Web
Injections are a technique where malware intercepts Windows API functions called by the browser. The process of
intercepting a function is called hooking. A commonly hooked function to perform web injections on Windows is
HttpSendRequestA. By intercepting this function, the malware can scan HTTP requests for sensitive data such as
credit card numbers and login details, and send these to the operator of the malware.

In the original versions of Emotet, initial access was gained through email campaigns. These emails often contained
the malicious executable, or contained a link that tempted victims to download and run a malicious executable [3].
The executable would manipulate victims’ browsers to show fake content overlaid on top of webpages. This technique
was used to steal credentials to sensitive accounts, such as login/password pairs for online banking websites.

Until 2015, Emotet was for sale on public forums [5], after which its sale became private. Since Emotet became
private, its capabilities have shifted to support reconnaissance, and serve as a first stage in an infection chain that
may lead to additional malware being installed on victim systems. Emotet has been observed deploying the banking
Trojans Dridex and Qakbot, information stealer Trickbot, as well as the Ryuk ransomware. Emotet still uses malicious
emails to gain initial access, however these emails now contain Microsoft Office documents with embedded Visual
Basic macros. Visual basic macros allow users to extend Microsoft Office applications by using the Visual Basic
programming language to automate tasks and provide a rich feature set. However, these macros are commonly used
by attackers to execute malicious code when an office document is opened by a user. PowerShell is a Windows
command-line shell built on top of the .NET Framework, which accepts and returns .NET objects. In the case of
recent versions of Emotet, these macros execute PowerShell code on the victim system, and this PowerShell code
downloads the next stage of the malware. Figure 1 displays the process.

Fig. 1. Steps that lead to an Emotet infection.

PowerShell can be called with the parameter -EncodedCommand with Base64 encoded PowerShell code as the
value. This is a powerful feature, but it is often abused by malware to hide the content of a payload within a Base64-
encoded string.

90	 Zane Gittins et al. / Procedia Computer Science 176 (2020) 88–97
Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

Emotet invokes PowerShell with a Base64-encoded payload. This PowerShell payload attempts to download the
Emotet binary from five unique command and control servers. Command and Control servers are systems controlled
by attackers which are used to communicate with malware on compromised systems. The use of five command and
control servers provides this stage of the attack some resiliency; if any of these servers are successfully contacted,
then the other servers under the attacker’s control are not needed, and hence not contacted. Due to this, defenders
only looking at network traffic may miss some of the command and control servers and fail to have a complete
understanding of the attacker’s infrastructure.

If PowerShell successfully downloads the next stage from a command and control server then a Windows ex-
ecutable named 377.exe is saved with the contents returned by the attackers server. The name of this executable
differs between samples, however in all cases we have observed executables containing only numeric names. This
executable is then started by PowerShell by making a call to the .NET System.Diagnostics.Process class. When run
with the name 377.exe, and administrative permissions, the executable saves an exact copy of itself to the following
location:

C:\Users\TargetUserName\AppData\Local\monthlymaker

Where TargetUserName is the name of the infected user. The executable name varies between samples, how-
ever the directory is consistent in the samples that we analyzed. 377.exe then starts the copy of itself called
monthlymaker.exe and deletes itself from disk. monthlymaker.exe then creates a service for persistence. Win-
dows Services allow for the creation of executables that run for an extended duration, and that can be set to run when
a computer boots. The service created by monthlymaker.exe has the path where monthlymaker.exe was saved,
and has a description that is an exact copy of the legitimate Microsoft Windows service description for Bitlocker.
Bitlocker is a encryption feature in Microsoft Windows. The service start type is set to automatic, which will cause
monthlymaker.exe to start each time the operating system does. In the Mitre Att&ck Framework this is assigned
the identifier T1050.

Defenders can detect variants of Emotet that use services for persistence by monitoring for Windows Event ID
7045 on Windows 2008R2 and later systems. Event logs are files on Windows systems that store events that occur
on a system. Events include security data, error logs, access logs, and many more. Event ID 7045 is generated on a
Windows system whenever a new service is installed on a system.

2.2. OceanLotus Symantec DLL Hijacking

Vulnerable Symantec RasTLS Application

SHA256:F9EBF6AEB3F0FB0C29BD8F3D652476CD1FE8BD9A0C11CB15C43DE33BBCE0BF68

OceanLotus Dynamic Link Library

SHA256:06DEC0082EAC094DC0B4B3DE8854F190F1D3112DADA0D414D9A085A0EE309199

OceanLotus is an advanced persistent threat, also known as SeaLotus, APT-C-00 and APT32, that has been fol-
lowed closely by security firms such as ESET. OceanLotus targets have included companies, governments, and dissi-
dents. Most known targets of OceanLotus have been located in and around Southeast Asia [1].

In 2018, the security firm ESET released a whitepaper [2] which described how OceanLotus deployed a backdoor
which made use of a flaw in the Symantec Network Access Control application to maintain persistence and bypass
security products. This backdoor has only been observed effecting targets running Microsoft Windows. The flaw is a
common technique, which makes use of the lack of validation when the Symantec Network Access Control application
loads a dynamic link library from the Windows side by side folder. This technique is known as DLL-sideloading, and
has identifier T1073 in Mitre Att&ck. Dynamic link libraries, abbreviated as DLLs, are libraries that contain code
that can be used by multiple programs simultaneously. DLL-Sideloading is a technique where an attacker causes an
unintended library to be loaded when a Windows Side-By-Side manifest is not properly configured. Windows Side-
By-Side manifest is a file that specifies a Side-By-Side assembly, Side-By-Side assemblies are a group of libraries, and
classes provided to applications. By placing a malicious DLL with the same name that the Symantec Product expects,
and by exporting the same functions as the legitimate DLL, OceanLotus is able to force the Symantec Network

Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

Access Control application to load a malicious dynamic link library. It appears that OceanLotus deletes the legitimate
symantec library, and replaces it with their own malicious library. Because this version of the Symantec application
does not check the digital signature of the Rastls.dll library it loads, attackers are able to force the application to
execute their malicious code.

When the Symantec Network Access Control application attempts to call one of the functions imported from the
malicious library, the OceanLotus code executes. It does not appear that the malicious library maintains any of the
original functionality of the original library, and therefore may cause instability in the Symantec application.

Applocker is a tool created by Microsoft to allow for application whitelisting. If code signed by Symantec is
whitelisted in Applocker then this technique could be used to bypass Applocker as the malicious code will be running
under the context of the legitimately signed Symantec executable. Furthermore, using side-loading as a method of
persistence makes it more difficult for defenders to detect the malware, because it is executing in the context of a
trusted security vendor.

To ensure that the Symantec Network Access Control application starts each time the operating system reboots,
the malware modifies a registry key in the current user registry hive:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\run

The Windows Registry is a hierarchical database that stores settings used by the Windows operating system and
Windows applications. The registry key modified by OceanLotus, is used to start the Symantec application each
time that a user logs in. This technique has identifier T1060 in Mitre Att&ck. This registry hive is writable without
administrative permissions and will launch Symantec Endpoint Protection when the user who was infected logs on
to the system. The value stored in this registry key is the path to where the Symantec application, rastlsc.exe, is
stored on disk by the actor:

C:\Users\Username\AppData\Roaming\Symantec Endpoint Protection\

12.1.671.4971.104a\DeviceAssociationService\rastlsc.exe

Each time a user logs in, rasltsc.exe is started, and once started, it imports the malicious OceanLotus DLL.
Then, when rasltsc.exe attempts to use one of the imported functions, malicious shellcode stored in a file
SysLog.bin — located in the same directory — is executed. This technique functions because the malicious
rastls.dll exports the same five functions that the legitimate library exports, and because the application does
not properly validate the imported library.

Fig. 2. Library Exports

All exported functions from the malicious DLL lead to the same malicious function. Shellcode is position indepen-
dent code, written in assembly language, which traditionally launches a shell, but may take any action. The shellcode
used by OceanLotus is a backdoor which communicates over TCP port 25123 [2]. The shellcode makes use of RtlZe-
roMemory to clear the MZ file signature of the Symantec application in memory. File signatures are the bytes at the
beginning of a file, used to identify a file. Windows executables begin with the bytes 4D 5A, which in ASCII is MZ.
Some security solutions scan memory for this file signature to identify Windows executables. Clearing the MZ file
signature may prevent some security solutions from scanning the application in memory, and thus failing to identify
the shellcode. Automatic memory dumping may also fail because of this defense mechanism [2]. Memory dumping is
the process of writing a region of memory to disk.

	 Zane Gittins et al. / Procedia Computer Science 176 (2020) 88–97� 91
Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

Emotet invokes PowerShell with a Base64-encoded payload. This PowerShell payload attempts to download the
Emotet binary from five unique command and control servers. Command and Control servers are systems controlled
by attackers which are used to communicate with malware on compromised systems. The use of five command and
control servers provides this stage of the attack some resiliency; if any of these servers are successfully contacted,
then the other servers under the attacker’s control are not needed, and hence not contacted. Due to this, defenders
only looking at network traffic may miss some of the command and control servers and fail to have a complete
understanding of the attacker’s infrastructure.

If PowerShell successfully downloads the next stage from a command and control server then a Windows ex-
ecutable named 377.exe is saved with the contents returned by the attackers server. The name of this executable
differs between samples, however in all cases we have observed executables containing only numeric names. This
executable is then started by PowerShell by making a call to the .NET System.Diagnostics.Process class. When run
with the name 377.exe, and administrative permissions, the executable saves an exact copy of itself to the following
location:

C:\Users\TargetUserName\AppData\Local\monthlymaker

Where TargetUserName is the name of the infected user. The executable name varies between samples, how-
ever the directory is consistent in the samples that we analyzed. 377.exe then starts the copy of itself called
monthlymaker.exe and deletes itself from disk. monthlymaker.exe then creates a service for persistence. Win-
dows Services allow for the creation of executables that run for an extended duration, and that can be set to run when
a computer boots. The service created by monthlymaker.exe has the path where monthlymaker.exe was saved,
and has a description that is an exact copy of the legitimate Microsoft Windows service description for Bitlocker.
Bitlocker is a encryption feature in Microsoft Windows. The service start type is set to automatic, which will cause
monthlymaker.exe to start each time the operating system does. In the Mitre Att&ck Framework this is assigned
the identifier T1050.

Defenders can detect variants of Emotet that use services for persistence by monitoring for Windows Event ID
7045 on Windows 2008R2 and later systems. Event logs are files on Windows systems that store events that occur
on a system. Events include security data, error logs, access logs, and many more. Event ID 7045 is generated on a
Windows system whenever a new service is installed on a system.

2.2. OceanLotus Symantec DLL Hijacking

Vulnerable Symantec RasTLS Application

SHA256:F9EBF6AEB3F0FB0C29BD8F3D652476CD1FE8BD9A0C11CB15C43DE33BBCE0BF68

OceanLotus Dynamic Link Library

SHA256:06DEC0082EAC094DC0B4B3DE8854F190F1D3112DADA0D414D9A085A0EE309199

OceanLotus is an advanced persistent threat, also known as SeaLotus, APT-C-00 and APT32, that has been fol-
lowed closely by security firms such as ESET. OceanLotus targets have included companies, governments, and dissi-
dents. Most known targets of OceanLotus have been located in and around Southeast Asia [1].

In 2018, the security firm ESET released a whitepaper [2] which described how OceanLotus deployed a backdoor
which made use of a flaw in the Symantec Network Access Control application to maintain persistence and bypass
security products. This backdoor has only been observed effecting targets running Microsoft Windows. The flaw is a
common technique, which makes use of the lack of validation when the Symantec Network Access Control application
loads a dynamic link library from the Windows side by side folder. This technique is known as DLL-sideloading, and
has identifier T1073 in Mitre Att&ck. Dynamic link libraries, abbreviated as DLLs, are libraries that contain code
that can be used by multiple programs simultaneously. DLL-Sideloading is a technique where an attacker causes an
unintended library to be loaded when a Windows Side-By-Side manifest is not properly configured. Windows Side-
By-Side manifest is a file that specifies a Side-By-Side assembly, Side-By-Side assemblies are a group of libraries, and
classes provided to applications. By placing a malicious DLL with the same name that the Symantec Product expects,
and by exporting the same functions as the legitimate DLL, OceanLotus is able to force the Symantec Network

Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

Access Control application to load a malicious dynamic link library. It appears that OceanLotus deletes the legitimate
symantec library, and replaces it with their own malicious library. Because this version of the Symantec application
does not check the digital signature of the Rastls.dll library it loads, attackers are able to force the application to
execute their malicious code.

When the Symantec Network Access Control application attempts to call one of the functions imported from the
malicious library, the OceanLotus code executes. It does not appear that the malicious library maintains any of the
original functionality of the original library, and therefore may cause instability in the Symantec application.

Applocker is a tool created by Microsoft to allow for application whitelisting. If code signed by Symantec is
whitelisted in Applocker then this technique could be used to bypass Applocker as the malicious code will be running
under the context of the legitimately signed Symantec executable. Furthermore, using side-loading as a method of
persistence makes it more difficult for defenders to detect the malware, because it is executing in the context of a
trusted security vendor.

To ensure that the Symantec Network Access Control application starts each time the operating system reboots,
the malware modifies a registry key in the current user registry hive:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\run

The Windows Registry is a hierarchical database that stores settings used by the Windows operating system and
Windows applications. The registry key modified by OceanLotus, is used to start the Symantec application each
time that a user logs in. This technique has identifier T1060 in Mitre Att&ck. This registry hive is writable without
administrative permissions and will launch Symantec Endpoint Protection when the user who was infected logs on
to the system. The value stored in this registry key is the path to where the Symantec application, rastlsc.exe, is
stored on disk by the actor:

C:\Users\Username\AppData\Roaming\Symantec Endpoint Protection\

12.1.671.4971.104a\DeviceAssociationService\rastlsc.exe

Each time a user logs in, rasltsc.exe is started, and once started, it imports the malicious OceanLotus DLL.
Then, when rasltsc.exe attempts to use one of the imported functions, malicious shellcode stored in a file
SysLog.bin — located in the same directory — is executed. This technique functions because the malicious
rastls.dll exports the same five functions that the legitimate library exports, and because the application does
not properly validate the imported library.

Fig. 2. Library Exports

All exported functions from the malicious DLL lead to the same malicious function. Shellcode is position indepen-
dent code, written in assembly language, which traditionally launches a shell, but may take any action. The shellcode
used by OceanLotus is a backdoor which communicates over TCP port 25123 [2]. The shellcode makes use of RtlZe-
roMemory to clear the MZ file signature of the Symantec application in memory. File signatures are the bytes at the
beginning of a file, used to identify a file. Windows executables begin with the bytes 4D 5A, which in ASCII is MZ.
Some security solutions scan memory for this file signature to identify Windows executables. Clearing the MZ file
signature may prevent some security solutions from scanning the application in memory, and thus failing to identify
the shellcode. Automatic memory dumping may also fail because of this defense mechanism [2]. Memory dumping is
the process of writing a region of memory to disk.

92	 Zane Gittins et al. / Procedia Computer Science 176 (2020) 88–97
Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

To communicate, the malware chooses between one of three subdomains in its configuration and prepends a sub-
domain that is generated from the computer name of the victim system [2].

Fig. 3. DNS Request

If this DNS request is successful than the malware attempts to communicate over TCP with a command and
control server. The communication is encrypted using RC4, however the key is prepended to the data, and thus the
communication is accessible with some basic scrutiny of the packets.

2.3. TrickBot

HTML Email Attachment

SHA256:7AEE90A79191DBB914C77D886C14D5BCAF217CE9C046B85407F69A6F9AB7BB73

Trickbot is a malware aimed at stealing valuable information from the targets that it infects. Trickbot is a modular
malware, that is, the initial executable does not contain all of the malware’s functionality, instead modules are down-
loaded from the Trickbot command and control server based on the data sent by the client. This model has several
advantages. First, it allows the malware authors to distribute new modules to clients when they see fit. Secondly, if a
Trickbot module is detected by an anti-malware solution, only the module may be removed, leaving the primary Trick-
bot infection behind. Trickbot is well known for its ability to steal passwords saved in browsers, including Google
Chrome (note that Google Chrome, when the user is not logged into their Google account, keeps all passwords in a
sqlite database encrypted using a key that can be retrieved by making a Windows API call), Firefox, as well as stealing
saved information from Microsoft Outlook.

Trickbot samples have been observed using the following method to gain initial access. A malicious email is sent
to targets, this email contains an .html attachment. If the user downloads and opens the .html attachment then they
are presented with a web page with a single line of text, that prompts them to download a Microsoft Word document.
The Word document is embedded within the html page in Base64. Opening this word document results in embedded
visual basic code being executed, the purpose of this code is to construct a JSCRIPT script, which is placed in the
same directory as the word document. JScript is Microsoft’s implementation of JavaScript. The VBA code ends by
executing the JScript by calling Microsoft’s Wscript tool. WScript also known as Windows Script Host, is a tool by
Microsoft that allows users to execute scripts in a variety of languages.

The JScript is heavily obfuscated — a common technique used by writers of malware —, however using Python
code we were able to extract its contents; see the code snippet in Listing 1. Note that the obfuscation, although difficult
for a human to parse, can be unwound with simple regular expressions, as show in the Python code.

1 import re

2 def matches(regex , text):

3 pattern = re.compile(regex)

4 return pattern.search(text)

5 payload = "payload.js"

6 data = open(payload , "r")

7 payload_data = data.read()

8 data.close()

9 new_dict = {}

10 payload_data = payload_data.split("\n")

11 for line in payload_data:

12 if matches("[0 -9]+:\\ \\\"", line):

13 print(line)

14 data = int(re.search(r’\d+’, line).group())

15 val = re.findall(r’"([^"]*)"’, line)

16 new_dict[data] = val

17 elif matches("[0 -9]+\\]\\([0 -9]+",line):

18 data = map(int , re.findall(r’\d+’, line))

19 data = list(data)

20 key = data[len(data) -1]

Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

21 print(new_dict[key])

22 new_dict = {}
Listing 1. Python script for de-obfuscating the Trickbot JScript

The Trickbot JScript attempts to download the next stage of the payload by making an http get request to a Trickbot
command and control server. If the request is made with the proper parameters then Trickbot is downloaded to the
target system. Trickbot copies itself to %APPDATA%\Roaming\mslibs\ and chooses a random lowercase alpha string
for its name.

Windows Scheduled Tasks are a feature that allows for running a executable or script whenever a given trigger
is met. Trickbot creates a scheduled task named Ms Libraries with two triggers. The first trigger runs the trickbot
executable every time the user logs on. The second trigger will run the executable every 9 minutes for the next
415 minutes on the day that the scheduled task was created. This is likely to make multiple attempts in case initial
connection to the Trickbot command and control servers fail. Scheduled task creation has identifier T1053 in the Mitre
Att&ck framework.

2.4. OceanLotus — Explorer-COM Hijack

COM Hijack Library

SHA256:860F165C2240F2A83EB30C412755E5A025E25961CE4633683F5BC22F6A24DDB6

By searching for the IP address 198.50.234.111 from the Ocean Lotus report by ESET in Hybrid Analysis, we
were able to discover another sample that is possibly tied to the Ocean Lotus group. Hybrid Analysis is a free to
use malware sandbox, that runs a given executable inside of a virtual machine, and records events that occur inside
of the virtual machine. This malware sample makes use of a technique known as Component Object Model (COM)
hijacking. Component Object Model is a standard for creating platform independent software components, and is the
basis of Microsoft’s OLE and ActiveX technologies. COM servers provide access to COM objects through pointers to
interfaces. COM servers are implemented in the form of Windows dynamic link libraries. For a dynamic link library
to be a valid COM server it must export two functions at a minimum, DllGetClassObject, and DllCanUnloadNow.
DllGetClassObject is called when an application needs to access a COM object, the server which exports DllGetClas-
sObject returns a pointer to the interface for the COM object. DLLCanUnloadNow is called when the application is no
longer using any COM objects, and unloads the COM server library. COM objects are loaded by using the Windows
registry. Specifically, a COM object is searched for by looking at the registry keys present in:

System Hive HKLM:\\SOFTWARE\Classes\CLSID

User Hive HKCU:\\SOFTWARE\Classes\CLSID

The DLL path for the COM server is stored within the registry key InProcServer32, which is a subkey of either
the system or user hive. The user registry hive is queried before the system hive. This can pose a serious issue, if
an attacker creates or modifies a user hive key then their COM server will be loaded instead of the legitimate COM
server. In the Hybrid Analysis report for this malware sample we noticed the registry value for a COM object was
modified, the CLSID for this COM object is:

CLSID 0E5AAE11-A475-4C5B-AB00-C66DE400274E

The Location of the legitimate registry key is HKLM:

HKLM:\\SOFTWARE\Classes\CLSID\{0E5AAE11-A475-4C5B-AB00-C66DE400274E}

The Location of the malicious registry key is HKCU:

HKCU:\\SOFTWARE\Classes\CLSID\{0E5AAE11-A475-4C5B-AB00-C66DE400274E}

The legitimate CLSID contains the registry value %SystemRoot%\system32\Windows.Storage.dll within the
subkey InProcServer32. Which is a legitimate COM server used by Windows Explorer. By creating a similar registry
key in HKCU that contains a path to a malicious DLL, the malware is able to perform COM hijacking. This will cause

	 Zane Gittins et al. / Procedia Computer Science 176 (2020) 88–97� 93
Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

To communicate, the malware chooses between one of three subdomains in its configuration and prepends a sub-
domain that is generated from the computer name of the victim system [2].

Fig. 3. DNS Request

If this DNS request is successful than the malware attempts to communicate over TCP with a command and
control server. The communication is encrypted using RC4, however the key is prepended to the data, and thus the
communication is accessible with some basic scrutiny of the packets.

2.3. TrickBot

HTML Email Attachment

SHA256:7AEE90A79191DBB914C77D886C14D5BCAF217CE9C046B85407F69A6F9AB7BB73

Trickbot is a malware aimed at stealing valuable information from the targets that it infects. Trickbot is a modular
malware, that is, the initial executable does not contain all of the malware’s functionality, instead modules are down-
loaded from the Trickbot command and control server based on the data sent by the client. This model has several
advantages. First, it allows the malware authors to distribute new modules to clients when they see fit. Secondly, if a
Trickbot module is detected by an anti-malware solution, only the module may be removed, leaving the primary Trick-
bot infection behind. Trickbot is well known for its ability to steal passwords saved in browsers, including Google
Chrome (note that Google Chrome, when the user is not logged into their Google account, keeps all passwords in a
sqlite database encrypted using a key that can be retrieved by making a Windows API call), Firefox, as well as stealing
saved information from Microsoft Outlook.

Trickbot samples have been observed using the following method to gain initial access. A malicious email is sent
to targets, this email contains an .html attachment. If the user downloads and opens the .html attachment then they
are presented with a web page with a single line of text, that prompts them to download a Microsoft Word document.
The Word document is embedded within the html page in Base64. Opening this word document results in embedded
visual basic code being executed, the purpose of this code is to construct a JSCRIPT script, which is placed in the
same directory as the word document. JScript is Microsoft’s implementation of JavaScript. The VBA code ends by
executing the JScript by calling Microsoft’s Wscript tool. WScript also known as Windows Script Host, is a tool by
Microsoft that allows users to execute scripts in a variety of languages.

The JScript is heavily obfuscated — a common technique used by writers of malware —, however using Python
code we were able to extract its contents; see the code snippet in Listing 1. Note that the obfuscation, although difficult
for a human to parse, can be unwound with simple regular expressions, as show in the Python code.

1 import re

2 def matches(regex , text):

3 pattern = re.compile(regex)

4 return pattern.search(text)

5 payload = "payload.js"

6 data = open(payload , "r")

7 payload_data = data.read()

8 data.close ()

9 new_dict = {}

10 payload_data = payload_data.split("\n")

11 for line in payload_data:

12 if matches("[0 -9]+:\\ \\\"", line):

13 print(line)

14 data = int(re.search(r’\d+’, line).group ())

15 val = re.findall(r’"([^"]*)"’, line)

16 new_dict[data] = val

17 elif matches("[0 -9]+\\]\\([0 -9]+",line):

18 data = map(int , re.findall(r’\d+’, line))

19 data = list(data)

20 key = data[len(data) -1]

Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

21 print(new_dict[key])

22 new_dict = {}
Listing 1. Python script for de-obfuscating the Trickbot JScript

The Trickbot JScript attempts to download the next stage of the payload by making an http get request to a Trickbot
command and control server. If the request is made with the proper parameters then Trickbot is downloaded to the
target system. Trickbot copies itself to %APPDATA%\Roaming\mslibs\ and chooses a random lowercase alpha string
for its name.

Windows Scheduled Tasks are a feature that allows for running a executable or script whenever a given trigger
is met. Trickbot creates a scheduled task named Ms Libraries with two triggers. The first trigger runs the trickbot
executable every time the user logs on. The second trigger will run the executable every 9 minutes for the next
415 minutes on the day that the scheduled task was created. This is likely to make multiple attempts in case initial
connection to the Trickbot command and control servers fail. Scheduled task creation has identifier T1053 in the Mitre
Att&ck framework.

2.4. OceanLotus — Explorer-COM Hijack

COM Hijack Library

SHA256:860F165C2240F2A83EB30C412755E5A025E25961CE4633683F5BC22F6A24DDB6

By searching for the IP address 198.50.234.111 from the Ocean Lotus report by ESET in Hybrid Analysis, we
were able to discover another sample that is possibly tied to the Ocean Lotus group. Hybrid Analysis is a free to
use malware sandbox, that runs a given executable inside of a virtual machine, and records events that occur inside
of the virtual machine. This malware sample makes use of a technique known as Component Object Model (COM)
hijacking. Component Object Model is a standard for creating platform independent software components, and is the
basis of Microsoft’s OLE and ActiveX technologies. COM servers provide access to COM objects through pointers to
interfaces. COM servers are implemented in the form of Windows dynamic link libraries. For a dynamic link library
to be a valid COM server it must export two functions at a minimum, DllGetClassObject, and DllCanUnloadNow.
DllGetClassObject is called when an application needs to access a COM object, the server which exports DllGetClas-
sObject returns a pointer to the interface for the COM object. DLLCanUnloadNow is called when the application is no
longer using any COM objects, and unloads the COM server library. COM objects are loaded by using the Windows
registry. Specifically, a COM object is searched for by looking at the registry keys present in:

System Hive HKLM:\\SOFTWARE\Classes\CLSID

User Hive HKCU:\\SOFTWARE\Classes\CLSID

The DLL path for the COM server is stored within the registry key InProcServer32, which is a subkey of either
the system or user hive. The user registry hive is queried before the system hive. This can pose a serious issue, if
an attacker creates or modifies a user hive key then their COM server will be loaded instead of the legitimate COM
server. In the Hybrid Analysis report for this malware sample we noticed the registry value for a COM object was
modified, the CLSID for this COM object is:

CLSID 0E5AAE11-A475-4C5B-AB00-C66DE400274E

The Location of the legitimate registry key is HKLM:

HKLM:\\SOFTWARE\Classes\CLSID\{0E5AAE11-A475-4C5B-AB00-C66DE400274E}

The Location of the malicious registry key is HKCU:

HKCU:\\SOFTWARE\Classes\CLSID\{0E5AAE11-A475-4C5B-AB00-C66DE400274E}

The legitimate CLSID contains the registry value %SystemRoot%\system32\Windows.Storage.dll within the
subkey InProcServer32. Which is a legitimate COM server used by Windows Explorer. By creating a similar registry
key in HKCU that contains a path to a malicious DLL, the malware is able to perform COM hijacking. This will cause

94	 Zane Gittins et al. / Procedia Computer Science 176 (2020) 88–97
Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

Fig. 4. Process Monitor

the malware to be loaded any time an executable is launched from the task bar. By using the Windows system internals
tool, Process Monitor, we were able to verify that Explorer attempts to load the COM server:

We then used the tool Ghidra to verify that the malicious dynamic link library exports DllGetClassObject, which
is necessary to perform COM hijacking of Windows Explorer. Ghidra is a reverse engineering tool developed by the
United States National Security Agency, and released as an open source tool. Component object model hijacking is
identified as T1122 in the Mitre Att&ck Framework.

Fig. 5. COM Export

2.5. Agent Tesla

Agent Tesla Dropper

878F50F5965B5C795BE1E1D7A12CE6155DC6FDE4ED127E8839EF1E4EE66BD708

Agent Tesla is a publicly available, for purchase malware, that enables threat actors to steal passwords saved in
browsers, collect keystrokes, and take screen captures of victim computers. Agent Tesla has been around since at least
2014, and has been used by groups such as Silver Terrier in attacks against businesses [?]. In this section we analyze
a sample of Agent Tesla used in a campaign in 2020. Agent Tesla targets solely the Microsoft Windows operating
system, and is focused on user workstations.

Agent Tesla employs layers of obfuscation and XOR encryption. The XOR function is a Boolean function which
on input (x, y), where x, y are bits, returns 1 if and only if exactly one of x, y is 1. This function is ubiquitous in
cryptography as it is reversible and easily used to encrypt a stream of data. To decode the Agent Tesla sample we
opened the sample in DnSpy. DnSpy is an open source .NET assembler and debugger. Upon inspecting the sample we
found code which executed a method named cor41, which was loaded from a resource within the Agent Tesla sample.
Using DnSpy we viewed the resource in the DnSpy hexadecimal editor, and noticed the bytes MZ in the ASCII view,
these two bytes are the file signature for Windows executables and dynamic link libraries. Noting that this was likely
an executable or dynamic link library embedded as a resource, we extracted the resource.

Fig. 6. MZ file signature

Once dumped to disk we discovered that this is a dynamic link library that is used to convert a PNG resource to
an executable. This technique, known as steganography, involves hiding one file within another. In this case, Agent
Tesla authors have hidden the next stage of the malware within a XOR encrypted executable embedded within a PNG
resource. The PNG resource looks like the following when viewed in DnSpy:

Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

Fig. 7. Steganography

Fig. 8. Agent Tesla Structure

An overview of the structure of the executable can be found in Figure 8.
Using PowerShell and its ability to invoke C# code we were able to use the functions in the malware author’s

library to decode the image and produce an executable. The PowerShell code to decrypt the PNG resource is pro-
vided on Github repository for this paper (https://github.com/zaneGittins/AgentTeslaStegDecoder) but a
significant snippet is provided in Listing 2.

1 public static byte[] FromBitmap(Bitmap cor23) {

2 ArrayList arrayList = new ArrayList ();

3 checked {

4 int num = cor23.Size.Width - 1;

5 for (int i = 0; i <= num; i++) {

6 int num2 = cor23.Size.Height - 1;

7 for (int j = 0; j <= num2; j++) {

8 Color pixel = cor23.GetPixel(i, j);

9 Color color = Color.FromArgb(0, 0, 0, 0);

10 bool flag = !pixel.Equals(color);

11 if (flag) {

12 arrayList.InsertRange(arrayList.Count , new byte[] {

13 pixel.R,

14 pixel.G,

15 pixel.B }); } } }

	 Zane Gittins et al. / Procedia Computer Science 176 (2020) 88–97� 95
Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

Fig. 4. Process Monitor

the malware to be loaded any time an executable is launched from the task bar. By using the Windows system internals
tool, Process Monitor, we were able to verify that Explorer attempts to load the COM server:

We then used the tool Ghidra to verify that the malicious dynamic link library exports DllGetClassObject, which
is necessary to perform COM hijacking of Windows Explorer. Ghidra is a reverse engineering tool developed by the
United States National Security Agency, and released as an open source tool. Component object model hijacking is
identified as T1122 in the Mitre Att&ck Framework.

Fig. 5. COM Export

2.5. Agent Tesla

Agent Tesla Dropper

878F50F5965B5C795BE1E1D7A12CE6155DC6FDE4ED127E8839EF1E4EE66BD708

Agent Tesla is a publicly available, for purchase malware, that enables threat actors to steal passwords saved in
browsers, collect keystrokes, and take screen captures of victim computers. Agent Tesla has been around since at least
2014, and has been used by groups such as Silver Terrier in attacks against businesses [?]. In this section we analyze
a sample of Agent Tesla used in a campaign in 2020. Agent Tesla targets solely the Microsoft Windows operating
system, and is focused on user workstations.

Agent Tesla employs layers of obfuscation and XOR encryption. The XOR function is a Boolean function which
on input (x, y), where x, y are bits, returns 1 if and only if exactly one of x, y is 1. This function is ubiquitous in
cryptography as it is reversible and easily used to encrypt a stream of data. To decode the Agent Tesla sample we
opened the sample in DnSpy. DnSpy is an open source .NET assembler and debugger. Upon inspecting the sample we
found code which executed a method named cor41, which was loaded from a resource within the Agent Tesla sample.
Using DnSpy we viewed the resource in the DnSpy hexadecimal editor, and noticed the bytes MZ in the ASCII view,
these two bytes are the file signature for Windows executables and dynamic link libraries. Noting that this was likely
an executable or dynamic link library embedded as a resource, we extracted the resource.

Fig. 6. MZ file signature

Once dumped to disk we discovered that this is a dynamic link library that is used to convert a PNG resource to
an executable. This technique, known as steganography, involves hiding one file within another. In this case, Agent
Tesla authors have hidden the next stage of the malware within a XOR encrypted executable embedded within a PNG
resource. The PNG resource looks like the following when viewed in DnSpy:

Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

Fig. 7. Steganography

Fig. 8. Agent Tesla Structure

An overview of the structure of the executable can be found in Figure 8.
Using PowerShell and its ability to invoke C# code we were able to use the functions in the malware author’s

library to decode the image and produce an executable. The PowerShell code to decrypt the PNG resource is pro-
vided on Github repository for this paper (https://github.com/zaneGittins/AgentTeslaStegDecoder) but a
significant snippet is provided in Listing 2.

1 public static byte[] FromBitmap(Bitmap cor23) {

2 ArrayList arrayList = new ArrayList ();

3 checked {

4 int num = cor23.Size.Width - 1;

5 for (int i = 0; i <= num; i++) {

6 int num2 = cor23.Size.Height - 1;

7 for (int j = 0; j <= num2; j++) {

8 Color pixel = cor23.GetPixel(i, j);

9 Color color = Color.FromArgb(0, 0, 0, 0);

10 bool flag = !pixel.Equals(color);

11 if (flag) {

12 arrayList.InsertRange(arrayList.Count , new byte[] {

13 pixel.R,

14 pixel.G,

15 pixel.B }); } } }

96	 Zane Gittins et al. / Procedia Computer Science 176 (2020) 88–97
Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

16 return (byte []) arrayList.ToArray(typeof(byte)); } }
Listing 2. PowerShell code to decrypt the PNG resource

In the PowerShell code we also perform XOR decryption using a copy of the C# code analyzed via DnSpy; see
Listing 3. Once the image is extracted and XOR decrypted, we obtain the final payload.

1 public static byte[] XOR(byte[] cor30) {

2 byte[] array = new byte[cor30.Length - 16 - 1 + 1];

3 Array.Copy(cor30 , 16, array , 0, array.Length);

4 int num = array.Length - 1;

5 for (int i = 0; i <= num; i++) {

6 byte[] array2 = array;

7 int num2 = i;

8 array2[num2] ^= cor30[i % 16]; }

9 return array; }
Listing 3. PowerShell code for XOR decryption

Because of the ease in reverse engineering .NET code, authors have utilized control flow flattening to make it
difficult to analyze. Control flow flattening uses switch statements inside of a for loop to make it difficult to determine
the flow of execution. When a block of code in a switch statement is executed, the program returns to the beginning
of the for loop, until the final block, which exits the for loop. The end of each switch statement sets the next block of
code that will be executed on the next iteration of the for loop.

When first run this payload checks for the mutex, qaxmCJedRGq, if it exists then the malware does not run.
Mutexes are objects that allow programs to share the same resource, mutexes are commonly used by malware to check
if a computer is already infected, additionally mutexes can be used by defenders to identify compromised systems.
Agent Tesla uses a mutex to prevent multiple instances of Agent Tesla running on the victim system.

If run with administrative privileges the malware disables Windows Defender by setting several registry keys.
Through registry manipulation, Agent Tesla disables the Windows Defender AntiSpyware, OnAccessProtection, Be-
haviourMonitoring, and TamperProtection keys.

To communicate Agent Tesla uses the SMTP protocol to send an email, the from and to address of the email
are the same, and credentials for the email address are embedded within the executable. The sample we analyzed
communicated with the target server over port 587. The subject line for an email corresponds to the type of information
exfiltrated, the username, and the system name. For example,

PW_SYSTEMNAME/USERNAME

where PW denotes the exfiltrated data is a password, SYSTEMNAME is the name of the compromised system, and
USERNAME is the name of the compromised user. The body of the email contains a timestamp, the username of
the infected user, system name of the infected system, and operating system details. Additionally, emails exfiltrating
passwords contain newline delimited data on passwords stolen from browsers, where each line is in the following
format:

Username:StolenUsername Password:StolenPassword Application:BrowserName URL:example.com

Where StolenUsername, StolenPassword, BrowserName, and example.com are values assigned by the malware during
exfiltration.

Analyzing the payload we found that Agent Tesla uses the following registry key to maintain persistence:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\StartupApproved\Run

This technique has identifier T1060 in Mitre Att&ck. To detect Agent Tesla defenders should alert on SMTP commu-
nication to untrusted domains, as well as monitor for the creation of startup registry keys.

3. Conclusion

For all the mythology and Hollywood glamour surrounding malware, all malware is limited to a finite number of
persistence mechanisms. In the case of Emotet a Windows service is created. In the case of Trickbot scheduled tasks

Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

are leveraged. In OceanLotus Symantec DLL Sideloading, the malware takes advantage of the lack of validation in
loading of dynamic link libraries (DLL); in the case of OceanLotus — Explorer-COM Hijack, the malware rides the
Component Object Model by manipulating a key in the user hive; in the case of Agent Tesla, the malware payload was
embedded in a PNG file, using a modern variation of the art of steganography, and starting the malware by leveraging
Windows run registry keys.

We do not want to minimize the challenges of defending systems against malware. Malware can be ingenious and
persistent. In this paper we examined a subset of the different techniques malware authors use in order to gain persis-
tence: the ability for the malware to survive a reboot of the system. The techniques described depend on the malware’s
ability to cloak itself as a legitimate component of the target system. In order to do so, the malware examined makes
use of Windows features and takes advantage of validation vulnerabilities, especially in the loading of Dynamically
Linked Libraries (DLLs).

Acknowledgments

This work was completed by the first author for a masters thesis in Computer Science at the California State
University at Channel Islands, under the supervision of the second author. We are grateful to colleagues at Haas
Automation, Meissner Filtration, and California State University Channel Islands for discussions about these topics.
We are also grateful to Sam Decanio and Kimo Hildreth for comments on the draft of our paper.

References

[1] Dumont, R., . APT32. URL: https://attack.mitre.org/groups/G0050/.
[2] ESET, 2018. OceanLotus: Old techniques, New backdoors. Technical Report. ESET. URL: https://www.welivesecurity.com/

wp-content/uploads/2018/03/ESET_OceanLotus.pdf.
[3] Hungenberg, T., . Emotet, trickbot, ryuk – ein explosiver malware-cocktail. URL: https://www.heise.de/security/artikel/

Emotet-Trickbot-Ryuk-ein-explosiver-Malware-Cocktail-4573848.html.
[4] Malpedia, . Mummy spider. URL: https://malpedia.caad.fkie.fraunhofer.de/actor/mummy_spider.
[5] Meyers, A., . Meet crowdstrike’s adversary of the month for february: Mummy spider. URL: https://www.crowdstrike.com/blog/

meet-crowdstrikes-adversary-of-the-month-for-february-mummy-spider/.
[6] NirSoft, . Nirsoft netpass. URL: https://www.nirsoft.net/utils/network_password_recovery.html.
[7] Zhang, X., . Analysis of the new modules that emotet spreads. URL: https://www.fortinet.com/blog/threat-research/

analysis-of-the-new-modules-that-emotet-spreads.html.

	 Zane Gittins et al. / Procedia Computer Science 176 (2020) 88–97� 97
Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

16 return (byte []) arrayList.ToArray(typeof(byte)); } }
Listing 2. PowerShell code to decrypt the PNG resource

In the PowerShell code we also perform XOR decryption using a copy of the C# code analyzed via DnSpy; see
Listing 3. Once the image is extracted and XOR decrypted, we obtain the final payload.

1 public static byte[] XOR(byte[] cor30) {

2 byte[] array = new byte[cor30.Length - 16 - 1 + 1];

3 Array.Copy(cor30 , 16, array , 0, array.Length);

4 int num = array.Length - 1;

5 for (int i = 0; i <= num; i++) {

6 byte[] array2 = array;

7 int num2 = i;

8 array2[num2] ^= cor30[i % 16]; }

9 return array; }
Listing 3. PowerShell code for XOR decryption

Because of the ease in reverse engineering .NET code, authors have utilized control flow flattening to make it
difficult to analyze. Control flow flattening uses switch statements inside of a for loop to make it difficult to determine
the flow of execution. When a block of code in a switch statement is executed, the program returns to the beginning
of the for loop, until the final block, which exits the for loop. The end of each switch statement sets the next block of
code that will be executed on the next iteration of the for loop.

When first run this payload checks for the mutex, qaxmCJedRGq, if it exists then the malware does not run.
Mutexes are objects that allow programs to share the same resource, mutexes are commonly used by malware to check
if a computer is already infected, additionally mutexes can be used by defenders to identify compromised systems.
Agent Tesla uses a mutex to prevent multiple instances of Agent Tesla running on the victim system.

If run with administrative privileges the malware disables Windows Defender by setting several registry keys.
Through registry manipulation, Agent Tesla disables the Windows Defender AntiSpyware, OnAccessProtection, Be-
haviourMonitoring, and TamperProtection keys.

To communicate Agent Tesla uses the SMTP protocol to send an email, the from and to address of the email
are the same, and credentials for the email address are embedded within the executable. The sample we analyzed
communicated with the target server over port 587. The subject line for an email corresponds to the type of information
exfiltrated, the username, and the system name. For example,

PW_SYSTEMNAME/USERNAME

where PW denotes the exfiltrated data is a password, SYSTEMNAME is the name of the compromised system, and
USERNAME is the name of the compromised user. The body of the email contains a timestamp, the username of
the infected user, system name of the infected system, and operating system details. Additionally, emails exfiltrating
passwords contain newline delimited data on passwords stolen from browsers, where each line is in the following
format:

Username:StolenUsername Password:StolenPassword Application:BrowserName URL:example.com

Where StolenUsername, StolenPassword, BrowserName, and example.com are values assigned by the malware during
exfiltration.

Analyzing the payload we found that Agent Tesla uses the following registry key to maintain persistence:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\StartupApproved\Run

This technique has identifier T1060 in Mitre Att&ck. To detect Agent Tesla defenders should alert on SMTP commu-
nication to untrusted domains, as well as monitor for the creation of startup registry keys.

3. Conclusion

For all the mythology and Hollywood glamour surrounding malware, all malware is limited to a finite number of
persistence mechanisms. In the case of Emotet a Windows service is created. In the case of Trickbot scheduled tasks

Gittins, Soltys / Procedia Computer Science 00 (2020) 000–000

are leveraged. In OceanLotus Symantec DLL Sideloading, the malware takes advantage of the lack of validation in
loading of dynamic link libraries (DLL); in the case of OceanLotus — Explorer-COM Hijack, the malware rides the
Component Object Model by manipulating a key in the user hive; in the case of Agent Tesla, the malware payload was
embedded in a PNG file, using a modern variation of the art of steganography, and starting the malware by leveraging
Windows run registry keys.

We do not want to minimize the challenges of defending systems against malware. Malware can be ingenious and
persistent. In this paper we examined a subset of the different techniques malware authors use in order to gain persis-
tence: the ability for the malware to survive a reboot of the system. The techniques described depend on the malware’s
ability to cloak itself as a legitimate component of the target system. In order to do so, the malware examined makes
use of Windows features and takes advantage of validation vulnerabilities, especially in the loading of Dynamically
Linked Libraries (DLLs).

Acknowledgments

This work was completed by the first author for a masters thesis in Computer Science at the California State
University at Channel Islands, under the supervision of the second author. We are grateful to colleagues at Haas
Automation, Meissner Filtration, and California State University Channel Islands for discussions about these topics.
We are also grateful to Sam Decanio and Kimo Hildreth for comments on the draft of our paper.

References

[1] Dumont, R., . APT32. URL: https://attack.mitre.org/groups/G0050/.
[2] ESET, 2018. OceanLotus: Old techniques, New backdoors. Technical Report. ESET. URL: https://www.welivesecurity.com/

wp-content/uploads/2018/03/ESET_OceanLotus.pdf.
[3] Hungenberg, T., . Emotet, trickbot, ryuk – ein explosiver malware-cocktail. URL: https://www.heise.de/security/artikel/

Emotet-Trickbot-Ryuk-ein-explosiver-Malware-Cocktail-4573848.html.
[4] Malpedia, . Mummy spider. URL: https://malpedia.caad.fkie.fraunhofer.de/actor/mummy_spider.
[5] Meyers, A., . Meet crowdstrike’s adversary of the month for february: Mummy spider. URL: https://www.crowdstrike.com/blog/

meet-crowdstrikes-adversary-of-the-month-for-february-mummy-spider/.
[6] NirSoft, . Nirsoft netpass. URL: https://www.nirsoft.net/utils/network_password_recovery.html.
[7] Zhang, X., . Analysis of the new modules that emotet spreads. URL: https://www.fortinet.com/blog/threat-research/

analysis-of-the-new-modules-that-emotet-spreads.html.

