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For almost a century, aluminum (Al) in the form of Al oxyhydroxide (a crystalline compound), Al hydrox-
yphosphate (an amorphous Al phosphate hydroxide), Al phosphate, and Al potassium sulfate has been
used to improve the immunogenicity of vaccines. Al is currently included in vaccines against tetanus,
hepatitis A, hepatitis B, human papillomavirus, Haemophilus influenzae type b, and infections due to
Streptococcus pneumoniae and Neisseria meningitidis. Official health authorities consider the inclusion of
Al in most of the presently recommended vaccines to be extremely effective and sufficiently safe.
However, the inclusion of Al salts in vaccines has been debated for several years because of studies that
seem to indicate that chronic Al exposure through vaccine administration can interfere with cellular and
metabolic processes leading to severe neurologic diseases. Children, who in their first years of life receive
several vaccine doses over a reduced period of time, would be most susceptible to any risk that might be
associated with vaccines or vaccine components. The main aim of this paper was to discuss the data pre-
sently available regarding Al neurotoxicity and the risk for children receiving vaccines or other pharma-
ceutical preparations containing Al. Analysis of the literature showed that no apparent reason exists to
support the elimination of Al from vaccines for fear of neurotoxicity. The only problem that deserves
attention is the suggested relationship between Al oxyhydroxide-containing vaccines and macrophagic
myofaciitis or myalgic encephalomyelitis/chronic fatigue syndrome. Currently, definitive conclusions
cannot be drawn on these risks and further studies must be conducted. Until then, Al remains the best
solution to improve vaccine efficacy.

� 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

For almost a century, aluminum (Al) in the form of Al oxyhy-
droxide (a crystalline compound), Al hydroxyphosphate (an amor-
phous Al phosphate hydroxide), Al phosphate, and Al potassium
sulfate has been used to improve the immunogenicity of vaccines
[1]. Al is currently included in vaccines against tetanus, hepatitis
A, hepatitis B, human papillomavirus, Haemophilus influenzae type
b, and infections due to Streptococcus pneumoniae and Neisseria
meningitidis. Official health authorities consider the inclusion of
Al in most of the presently recommended vaccines to be extremely
effective and sufficiently safe. In a workshop sponsored by the US
National Vaccine Program Office, which was specifically planned to
discuss the role of Al in vaccines, invited international experts con-
cluded that Al salts were capable of directly stimulating the
immune system through the activation of antigen-presenting cells,
complement cascades, and the induction of chemokine secretion
[1]. Consequently, when added to vaccine antigens, AI can lead to
a significant increase in the immune response with higher and
more persistent production of specific antibodies against antigens
included in the vaccines, although its largest flaw is that Al usually
only induces a Th2 immune response. Moreover, the same work-
shop demonstrated that Al adjuvants have an apparent wide mar-
gin of safety because adverse events following their administration
were uncommon and showed poor clinical relevance. Although
these and similar statements are shared by scientific authorities
worldwide [2,3], the inclusion of Al salts in vaccines has been
debated for several years, and it is one of the problems that might
partially explain the vaccine refusals of some parents and physi-
cians [4]. Studies that seem to indicate that chronic Al exposure
through vaccine administration can interfere with several cellular
and metabolic processes leading to severe diseases, including neu-
rodevelopmental delay, autism spectrum disorder (ASD) and Alz-
heimer’s disease (AD), are the basis for this debate [5–10].

Children, who in their first years of life receive several vaccine
doses over a reduced period of time, are considered to be at the
highest risk for Al-dependent, vaccine-related complications.
Despite reassurances from health authorities, the question contin-
ues to be raised, and the elimination of Al from vaccines continues
to be discussed, even through the mass media [11]. Recently, a
study showing that subcutaneous injections of AI at vaccine-
adjuvant levels activated homologous genes with biomarkers of
autism in mouse brains has provided even more support for the
opponents of vaccines. Practically, some supposed that this study
might represent the final demonstration that Al induces the devel-
opment of autism in predisposed individuals. The article was
retracted a few weeks after its publication at the request of the
editor-in-chief and the authors because the data and the results
presented in the paper were clearly not reliable [12]. However,
as has previously occurred for the supposed relationship between
the measles, mumps and rubella vaccine and autism [13], negative
data can have a greater resonance than their retraction, and the
risk that fake news persistently supports vaccine opponents
remains significant. The main aim of this paper was to discuss
the data presently available regarding Al neurotoxicity and the risk
for children receiving vaccines or other pharmaceutical prepara-
tions containing Al.
2. Aluminum (AL) disposition

Al is an environmental metal that is the third most abundant
element in the earth’s crust and represents approximately 8% of
the crust’s total mineral components. Moreover, it is largely used
in many human activities, including food and drug preparation.
Finally, the release of Al to the air from industrial processes and
Please cite this article in press as: Principi N, Esposito S. Aluminum in vaccines:
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acidic precipitation, which mobilizes the metal from natural
sources, is common [14]. This airborne Al can pass to the water
or be inhaled. Thus, humans are continuously exposed to Al, and
it can be found (although in different concentrations) in all of the
body tissues and fluids beginning at birth. Starting with the evi-
dence that the mean AI blood level of term neonates is 0.19 ± 01
1 µmol/L [15] and that the Al in the blood accounts for approxi-
mately 4% of the total Al in the body [16], the total body content
of this metal at birth has been calculated to be approximately
400 µg [17].

Total body Al concentrations increase with exposure and are
generally significantly higher in adults than in children. The high-
est levels are found in the skeletal system and the lungs, which
contain approximately 50% and 25% of the body burden, respec-
tively. Significantly lower concentrations, 10%, 3% and 1%, are usu-
ally detected in the muscle, liver and brain, respectively [18].

Food and vaccines are the most important sources of Al for
infants and young children. However, vaccines play a major role
in this regard because Al absorption from the gastrointestinal tract
is poor. Approximately 0.2–0.4% of the ingested Al is absorbed and
reaches the bloodstream, with variations based on the type of Al
salt [19,20]. During infancy, general fluid consumption varies from
approximately 600–900 mL per day, and Al intake depends on the
dietary source. Breast milk contains a mean of 40 µg/L, whereas Al
levels in formula are significantly higher, ranging from 225 µg/L to
1150 µg/L because food industries use Al components in processing
facilities and add Al to food preparation to improve mixing and
reduce caking [21–25]. After weaning, Al intake increases and
reaches a mean of approximately 700 µg per day [26]. Thus, no
more than 2–3 µg per day of Al derived from food enter the sys-
temic circulation during the first year of life. In contrast, almost
the full amount of Al included in vaccines given intramuscularly
is bioavailable, albeit at a rate over time and with differences
among Al salts [27]. It has been calculated that only 51% of Al phos-
phate and 17% of Al hydroxide reach the bloodstream after a single
intramuscular (i.m.) injection in the first 28 days after injection,
and the remaining amount is absorbed in 28 and 137 days, respec-
tively [17]. In vaccines, the maximum amount of Al per dose varies
from vaccine to vaccine, with a maximum in combined prepara-
tions that can range from slightly more than 800 µg per dose, a
value that matches the US regulations that limit the amount of
Al in the recommended individual dose of biological products
(including vaccines), to not more than 850–1250 µg. An FDA study
found that the maximum amount of Al an infant should be exposed
to over the first year of life is 4225 µg when the recommended ACIP
vaccine schedule is used for calculation. This finding was con-
firmed by Glanz et al., who examined the cumulative and episodic
vaccine Al exposure in a sample of 408,608 children ranging in age
from birth to 24 months [28]. The mean cumulative Al exposure
from the vaccines varied from 1110 ± 320 µg to 4000 ± 800 µg
between 92 and 730 days of age. In 2002, an attempt was made
to evaluate whether intakes due to food and vaccines could be
excessive and lead to clinical problems. Keith et al. compared the
calculated body burdens with those expected for exposure at a
level considered safe for intermediate-duration exposure accord-
ing to the minimum risk level (MRL) established at that time
(2000 µg/kg/day) by the Agency for Toxic Substances and Disease
Registry [29]. These authors found that during the first year of life,
the calculated body burden from Al exposure from food was
always below the MRL curve, suggesting that diet could not cause
clinical problems. The same findings were reported for vaccines for
all but a few brief periods following injection. Recently, the analy-
sis of Keith et al. was updated, and new parameters were included
[29]. Contemporaneous MRLs (1000 µg/kg/day) and some variables
capable of better evaluating the retention and excretion of Al in
younger children were introduced [27]. In this study, previous data
Does it create a safety problem?. Vaccine (2018), https://doi.org/10.1016/j.
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were substantially confirmed [27]. However, considering the speed
with which Al is absorbed from the injection site, the body burden
of Al from vaccines was only 2-fold higher than that of foods.

However, both of these studies were strongly criticized. In the
opinion of Masson et al. [30], Keith et al. used too high of an MRL
together with an erroneous model of 100% immediate absorption
of vaccine Al [29]. Moreover, the authors did not consider renal or
blood-brain barrier immaturity. Although significantly improved
from a methodological point of view, the results of Mitkus et al.
were also debated [17]. Once again, the MRL (1000 µg/kg/day),
although lower than that used in the previous study, was consid-
ered too high compared with the amount used in experimental
studies of Al-induced memory and behavioral changes. However,
the most important criticism was that Mitkus et al. did not account
for the elimination of Al from the body as being different when the
element is ingested or inhaled or when it is injected via the intra-
muscular route [17]. When Al is ingested or inhaled, body accumu-
lation occurs only when intake is abnormally high or when renal
elimination is significantly impaired. In contrast, when Al is
injected together with vaccine antigens, elimination is slower
because a relevant portion of Al remains at the injection site inside
the macrophages that initiate the immune response [31]. Phago-
cytes transport Al particles relatively quickly to the lymphoid
organs and then to the bloodstream [32]. Cells with Al might reach
distant organs.
3. The neurotoxicity of aluminum (AL)

3.1. Unquestionable demonstrations of aluminum (Al) neurotoxicity

Several in vitro, experimental and epidemiological studies have
clearly shown that Al is toxic, especially for the central nervous
system (CNS). It has been reported that Al in the brain significantly
alters cellular functions, both through interference with energy
metabolism and phosphorylation and dephosphorylation pro-
cesses and through modification of gene expression. Moreover, it
reduces neurotransmitter release, influences the activity of ion
channels, alters membrane properties, and favours abnormal pro-
tein accumulation [33]. To avoid the risk of severe adverse events
following Al exposure, many health authorities have defined max-
imum tolerable oral intakes. As previously reported, the US has
defined the oral MRL as 1000 µg/kg/day for both acute and chronic
administration [34]. However, the World Health Organization [35]
and the European Food Safety Authority [36] have stated signifi-
cantly lower values, indicating the provisional tolerable weekly
intake as 2000 µg/kg and 1000 µg/kg, respectively. All of these ref-
erence values are based on oral intake and do not consider other
routes of Al, including vaccine administration. Consequently, they
have a limited value for identifying the real risk of exposure. To
overcome this problem, urine and serum maximal tolerable con-
centrations have been established based on values found in healthy
adults and those with true AI-related diseases. Al levels <15 µg/L in
urine and <5 µg/L in serum are considered the background expo-
sure levels of the general population. The early signs of neurotox-
icity usually occur when Al levels are �13 µg/L in plasma and
�120 µg/L in urine. Finally, the critical value for significant
encephalopathy is 50 µg/L in plasma, whereas no definitive value
has been established for urine [37–40]. However, reference values
for children have not been defined. Consequently, it is very difficult
to interpret serum and urine values in children, particularly the
youngest [41]. On the other hand, information concerning the
age-related toxicity of Al, particularly in young children, is very
poor.

However, most of the cases in which a clear relationship exists
between Al exposure and the development of neurotoxicity have
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been reported in animals and individuals with severe renal insuffi-
ciency or those exposed to high Al concentrations for months.
Behavioral alterations have been demonstrated in rats when the
animals were intraperitoneally (ip) injected for 6 months with
850 µg/kg three times per week [42]. Dramatic retinal changes
were observed in rats injected ip with 0.3 mL of 4% AlCl3 per day
every day for 16 weeks [43]. A higher incidence of subjective neu-
rological symptoms such as problems concentrating, depression,
and fatigue were described in Al potroom or foundry workers at
Al smelters who were exposed to very high inhaled Al doses and
who had medium urine and serum concentrations that were well
above the aforementioned reference values [44,45]. Impaired
speech, apraxia and, later, dementia were found in patients with
end-stage renal disease who were chronically dialysed with solu-
tions containing Al or who continuously used gastric antacids or
Al phosphate binders. In these cases, plasma Al concentrations
between 80 and 500 µg/L were observed. Moreover, specific EEG
changes (alternating spikes and slow waves) that are considered
characteristic of Al toxicity were shown. However, brain tissue
modifications were minimal (slight cellular loss in the cortex, hip-
pocampus and Purkinje cells) [40,46–50]. The accumulation of Al
with the development of impaired bone mineralization and
delayed neurological development was also observed in premature
children with a physiologically reduced glomerular filtration rate
who received long-term parenteral nutrition with a solution with
a high Al content [51].

3.2. Potential association between aluminum (AI) and Alzheimer’s
disease and autism spectrum disorder (ASD): pros and cons

A potential association has been supposed between chronic Al
exposure and the development of AD or ASD based on specific his-
tochemical findings and epidemiological studies. Some studies
have found that Al administration was followed by the develop-
ment of brain lesions in animals, similar to those observed in peo-
ple with AD [52]. However, the doses used in these experimental
studies were abnormally high and far from those to which normal
people are exposed. Moreover, the hypothesis that the accumula-
tion of amyloid beta protein and amyloid plaque associated with
AD was because Al use has largely waned given the numerous
studies that have not found higher Al concentrations in the brains
of patients with AD than in the brains of age- and sex-matched
controls [53–56]. On the other hand, the histologic brain lesions
shown in patients with dialysis-associated neurotoxicity were
quite different from those typically reported in people with AD
[40]. Furthermore, most of the data collected from epidemiological
studies reject the hypothesis of an association between Al and AD
development. Rondeau et al. reported that a high daily intake of Al
through water was associated with cognitive impairment or AD
[57]. This finding seems to suggest that Al is neurotoxic and that
a real correlation exists between Al and AD. Moreover, neither Virk
et al. [58] nor Salib et al. [59] found differences in the incidence of
AD between individuals with chronic environmental Al exposure
and controls. In contrast, Wang et al. reported apparently positive
results [60]. These authors analysed 8 cohort and case-control
studies involving 10 587 individuals and found that participants
with chronic Al exposure through food or inhalation had a higher
risk for AD development (odds ratio [OR] 1.71, 95% confidence
interval [CI] 1.35–2.18). However, the results of this study were
debated primarily because the study included participants without
a definitive diagnosis of AD; therefore, it was possible that numer-
ous dementia cases of different origins were included. Also debat-
able are the conclusions of Walton [61], who applied Hill’s
causality criteria to establish causality between exposure and out-
come using the available data reporting that Al plays a causative
role in the development of AD. A correlation was not definitively
Does it create a safety problem?. Vaccine (2018), https://doi.org/10.1016/j.
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demonstrated, but even if it had been, this finding could not be
considered evidence of causation. However, no relationship was
demonstrated between Al-containing vaccines and AD.

Similar limitations are characteristic of the studies regarding
AD, particularly those studying the parenteral administration of
Al, as occurs in vaccines. The results of studies in experimental ani-
mals cannot be generalized to humans because of the differences
in administered Al doses and the methods used for administration.
For example, in the animal model developed to explore the poten-
tial behavioral phenotypes and CNS alterations in early postnatal
mice, Al was injected subcutaneously instead of i.m. as routinely
occurs in children when vaccines with Al are given [62]. Tomljen-
ovic and Shaw found that the increase in exposure to Al adjuvants
was significantly correlated with the increase in ASD prevalence in
the USA (r = 0.92, p < 0.0001) [63]. Moreover, the amount of Al
administered at 3–4 months of age is correlated with the current
prevalence of ASD in seven Western countries (r = 0.89–0.94,
p = 0.0018–0.0248). These findings led the authors to conclude that
Al is a potential contributing factor in the development of AD.
However, this study has some problems. First, correlation and cau-
sation were confused. Moreover, as the Global Advisory Committee
on Vaccine Safety stated [2], this and another study on the same
topic by the same authors were seriously flawed [64]. Importantly,
ecological studies, such as those carried out by these authors, can-
not be used to assert a causal association because they do not link
exposure to outcomes in individuals, and only make correlations
between exposure and outcomes on population averages. More-
over, these studies were characterized by inaccurate ASD rates
across different countries and differences in vaccination schedule
among countries. On the other hand, a recent study that evaluated
blood and hair Al levels, vaccine history and early infant develop-
ment failed to demonstrate any correlation between Al blood levels
and different aspects of infant development [65]. Similar findings
were reported for hair concentrations, although an inverse rela-
tionship was found when motor scores were studied. However,
extreme outlier hair Al values that might have decreased the sig-
nificance of the results were excluded from the calculation, thereby
limiting the value of this finding.

3.3. The problem of aluminum (Al) adjuvants and the development of
macrophagic myofaciitis (MMF) and the autoimmune/
autoinflammatory syndrome (ASIA) induced by adjuvants

To increase the evidence that use of Al-containing pharmaceu-
tical preparations lead to brain damage, supporters of this hypoth-
esis have attempted to link immunization and the administration
of Al-containing allergens for immunotherapy with the develop-
ment of the autoimmune/autoinflammatory syndrome induced
by adjuvants (ASIA) and, in particular, with macrophagic myofaci-
itis (MMF). ASIA was first described in 2011 and was defined as a
group of disorders including autoimmunity, sick building syn-
drome, silicosis, Gulf war syndrome and macrophagic myofaciitis
(MMF) occurring in individuals who have been exposed to vaccine
adjuvants, including Al oxyhydroxide, or to various chemicals
[66,67]. Moreover, it was recently suggested that lymphoma, Sjo-
gren syndrome, narcolepsy, and phospholipid syndrome can be
included in ASIA and possibly related to adjuvant administration
[68–70]. Most of the data regarding the potential association
between Al and the development of autoimmune diseases included
in ASIA have been collected amongst patients who have received
the hepatitis B and human papillomavirus vaccines [67]. Until
now, more than 4000 cases have been reported [71]. However,
most of the data that seem to identify vaccines as the cause of ASIA
are unconvincing. First, the described cases of ASIA have been diag-
nosed using criteria that are not specific. The diagnostic criteria
suggested by Sheonfeld and Agmon-Levin include conditions that
Please cite this article in press as: Principi N, Esposito S. Aluminum in vaccines:
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are commonly experienced in the community [72]. For example,
the major criteria include exposure to either a vaccine adjuvant
or an infection, a condition that occurs several times in any individ-
ual’s life. Moreover, the long list of ‘‘typical” manifestations include
myalgia, fatigue, pyrexia and insomnia; all of these symptoms
commonly occur in a multitude of participants without autoimmu-
nity. Furthermore, the major criteria leading to diagnoses of
autoimmune disease and chronic fatigue syndrome practically
leads to the diagnosis of ASIA in all cases. It is highly likely that
all patients with an autoimmune disease or chronic fatigue syn-
drome have had a fever during the same period of time. Finally,
most patients with autoimmunity have HLA haplotypes considered
particular to ASIA. In addition, given the numerous participants
who qualify for this diagnosis in this case, it is reasonable to raise
questions about the specificity of this criterion [73]. Moreover, a
large data series from human studies seem to negate the correla-
tion between Al administration and any ASIA clinical manifesta-
tion. One year after the description of ASIA, an analysis of the
available data led to the conclusion that the evidence that intrader-
mal immunotherapy with Al-containing preparations can induce
autoimmune diseases was very weak and was supported only by
anecdote [74]. More recently, no association was found either
between the hepatitis B vaccine and Haemophilus influenzae type
b vaccine or between the hepatitis B vaccine and the development
of multiple sclerosis or type 1 diabetes [75]. In addition (and con-
trary to what might be expected if Al-containing vaccines were
capable of inducing autoimmunity), no increase in exacerbations
in patients suffering from systemic lupus erythematosus who
had received hepatitis B vaccine was reported [76]. Finally, the
incidence of autoimmune diseases was lower in patients with
allergic rhinitis treated with Al-containing antigen preparations
than in those treated with nasal spray and antihistamines [74]. A
recent study of 18,841 patients receiving an allergen-specific
immunotherapy were compared with 428,484 conventionally trea-
ted participants confirmed this finding [73]. Interestingly, this
study calculated no increase in autoimmune diseases, even though
patients receiving allergen-specific immunotherapy had received
100–500 times more Al over 3–5 years than those given the hepati-
tis B or human papillomavirus vaccines.

Additional interesting data have been collected regarding MMF.
This condition is characterized by a muscular lesion at the site of a
previous i.m. vaccination in which large macrophages frequently
containing Al oxyhydroxide and lymphocytes are included [77].
Muscle lesions are systematically associated with systemic signs
and symptoms of diseases such as diffuse myalgias, chronic fati-
gue, and cognitive impairment. Taken together, these findings con-
stitute the so-called myalgic encephalomyelitis/chronic fatigue
syndrome (ME/CFS) that is diagnosed in approximately 50% of all
patients with MMF [78,79]. Because no exposure to Al other than
that due to vaccines was detected, immunization was considered
the possible cause of the disease. However, this disease is rare
and is diagnosed primarily in adults months or years after vaccine
administration, most likely depending on inter-patient variation in
the clearance of Al oxyhydroxide. A few sporadic paediatric cases
have been described, and the association between MMF and CNS
involvement is unclear in this population [80–84]. Al oxyhydroxide
is the Al salt commonly found, although other Al salts are also
included in vaccines, because Al oxyhydroxide has a much longer
tissue residence time than other Al salts, which causes more per-
sistent muscle lesions in experimental animals similar to those
found in patients with MMF [85]. As previous reported, Al oxyhy-
droxide might affect immune cells in the brain and cause damage.
To explain why billions of doses of vaccines containing Al oxyhy-
droxide did not cause any relevant problems and why MMF with
brain damage occurs in very few cases, it was suggested that cer-
tain genetic characteristics of individuals play a role in this regard.
Does it create a safety problem?. Vaccine (2018), https://doi.org/10.1016/j.
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Some cases of MMF have been diagnosed in patients of the HLA-
DRB1*01 group, which is associated with an increased risk of
developing autoimmune diseases [86]. Moreover, other genetic
factors can favour the brain penetration of Al. Studies involving
experimental animals have demonstrated that Al translocation is
higher after a systemic or cerebral increase in the activity of mono-
cyte chemoattractant protein-1 (MCP-1/CCL2). This chemokine
plays a fundamental role in the regulation of the migration and
infiltration of monocytes/macrophages and can influence Al biodis-
tribution [87]. Elevated levels were found in the sera of patients
with MMF [88]. Because MCP-1/CCL2 expression varies by age as
well as genetic and environmental factors, it was considered plau-
sible that the Al oxyhydroxide included in vaccines causes MMF
and brain damage in predisposed patients [8].

Interestingly, the finding that the genotyping for 4 single
nucleotide polymorphisms (SNPs) localized in the CCL2 gene of
patients with MMF (but not controls) showed that the AG haplo-
type of the SNP rs3760396C was associated with a slightly
increased risk for disease [32]. However, despite these intriguing
findings, the direct relationship between the Al oxyhydroxide con-
tained in vaccines and the brain damage accompanying some cases
of MMF should not be considered fully demonstrated. MMF unre-
lated to vaccination has been described, which suggests that other
causes unrelated to vaccination are the cause of this clinical prob-
lem [89].
4. Conclusions

Presently, no population-based studies regarding the potential
association between the Al in vaccines and the development of
neurotoxicity have been conducted. This limits the evaluation of
the neurotoxicity of Al-containing vaccines. However, billions of
doses of these prophylactic preparations have been administered
to children without incident and with enormous advantages
regarding the prevention of common and severe infectious dis-
eases. However, exposure to Al is associated with the development
of severe clinical problems, including CNS deterioration. Fortu-
nately, certain associations were found only in cases of long-term
exposure to high amounts of Al or when the renal excretion of
the element was impaired due to severe renal insufficiency. More-
over, the development of AD after Al exposure is far from certain,
as is the potential correlation between Al-containing vaccines
and ASIA. Although the bioavailability of Al included in vaccines
differs from that of the Al derived from water, food or inhalation,
and the exposure of young children to Al from vaccines is not pre-
cisely defined, the total Al exposure from immunization is likely
significantly lower than the level that causes neurotoxicity. Fur-
thermore, studies that seem to demonstrate a possible correlation
between vaccines and ADS development in children are strongly
debated because they are seriously flawed. Thus, current data do
not support the elimination of Al from vaccines for fear of
neurotoxicity.

The problem that deserves attention is the suggested relation-
ship between Al oxyhydroxide -containing vaccines and MMF or
ME/CSF. This relationship is supported by a series of experimental
findings and specific data collected from patients that suggest that,
in some cases, the Al contained in macrophages at the site of injec-
tion can reach the brain and cause damage in a few individuals
who most likely have a genetic predisposition. Importantly, the
described cases of MMF and ME/CSF are very few, and MMF cases
not related to adjuvants have been described. Currently, definitive
conclusions cannot be drawn. Thus, several studies must be con-
ducted. Until then, Al improves vaccine immunogenicity and per-
formance, and should be maintained; nevertheless, research on
the pharmacokinetics of Al in vaccines should be encouraged.
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