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Chapter 2
Hepatitis B Virus-Associated Hepatocellular 
Carcinoma

Youhua Xie

Abstract  Liver cancer is the fifth most common cancer worldwide in men and the 
ninth in women. It is also the second most common cause of cancer mortality. 
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. About 
350 million people globally are chronically infected with HBV. Chronic hepatitis B 
virus (HBV) infection accounts for at least 50% cases of HCC worldwide. Other 
non-HBV factors may increase HCC risk among persons with chronic HBV infec-
tion. Both indirect and direct mechanisms are involved in HCC oncogenesis by 
HBV. HCC-promoting HBV factors include long-lasting infection, high levels of 
HBV replication, HBV genotype, HBV integration, specific HBV mutants, and 
HBV-encoded oncoproteins (e.g., HBx and truncated preS2/S proteins). Recurrent 
liver inflammation caused by host immune responses during chronic HBV infection 
can lead to liver fibrosis and cirrhosis and accelerate hepatocyte turnover rate and 
promote accumulation of mutations. Major breakthroughs have been achieved in 
the prevention of HBV-associated HCC with HBV vaccines and antiviral 
therapies.
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2.1  �Introduction

According to a survey conducted in 2012, liver cancer is the fifth most common 
cancer worldwide in men (7.5% of the total new cancer cases in 2012) and the 
ninth in women (3.4%) [1]. It is also the second most common cause of cancer 
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mortality [1]. Hepatocellular carcinoma (HCC) is the most common type of liver 
cancer. The majority of HCC is associated with chronic infection of hepatitis B 
virus (HBV) or hepatitis C virus (HCV). This concise review focuses on HBV-
associated HCC.

About 350 million people globally are chronically infected with HBV [2]. 
Chronic HBV infection accounts for at least 50% cases of HCC worldwide [3] and 
is the dominant risk factor for HCC in areas with endemic HBV infection such as 
Eastern and Southeastern Asia and sub-Saharan Africa [4].

Other non-HBV factors may increase HCC risk among persons with chronic 
HBV infection, including older age [5], male sex [6], cirrhosis [7], diabetes mellitus 
[8], exposure to environmental carcinogens (aflatoxin B1 (AFB1), heavy alcohol 
and tobacco consumption) [9, 10], HIV coinfection [11], and possibly HDV super-
infection [12].

HBV infection is transmitted mainly vertically in endemic HBV areas, in con-
trast to horizontally in HBV low prevalent areas. More than 90% of vertical HBV 
transmission cases lead to chronic infection, whereas only 5–10% of horizontal 
HBV transmission cases do so. Accordingly, the average age of HBV chronic carri-
ers who develop HCC is younger in endemic HBV areas. Men are more susceptible 
to HBV-associated HCC than women, probably as a result of stimulation of HBV 
replication by androgens and a protective role of estrogens against HBV replication 
[13–15]. In most cases, HBV-associated HCC develops progressively from chronic 
liver disease, with cirrhosis in the majority of patients (70–90%) [5]. However, cir-
rhosis is not a prerequisite for the development of HBV-associated HCC [7]. HBV 
carriers without cirrhosis, especially those who have long-lasting infection, may 
also develop HCC. AFB1 is the foremost environmental risk factor of HCC in some 
Eastern Asian areas with endemic HBV infection. AFB1 causes a specific p53 muta-
tion and predisposes mutant hepatocytes to DNA damage [9]. AFB1 was reported to 
exert a synergistic carcinogenic effect with chronic HBV infection, resulting in a 
60-fold increased HCC risk [16].

2.2  �HBV Oncogenic Factors for HCC Development

Both indirect and direct mechanisms are involved in HCC oncogenesis by HBV. HCC-
promoting HBV factors include long-lasting infection, high levels of HBV replica-
tion, HBV genotype, HBV integration, specific HBV mutants, and HBV-encoded 
oncoproteins. In addition, recurrent liver inflammation caused by host immune 
responses during chronic HBV infection can lead to liver fibrosis and cirrhosis and 
accelerate hepatocyte turnover rate and promote accumulation of mutations.
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2.2.1  �Long-Lasting Infection and High Levels of Viral 
Replication

Long-lasting chronic HBV infection is associated with HCC development. As 
aforementioned, there is a much higher rate of chronic HBV infection in endemic 
HBV areas due to vertical viral transmission. The lengthened HBV infection period 
is thought to provide more opportunities for various viral and nonviral risk factors 
to promote HCC oncogenesis.

Hepatitis B e antigen (HBeAg) seropositivity and higher levels of serum HBV 
load are associated with high risk of HCC. A long-term follow-up study among 
11,893 male HBV carriers in Taiwan who were without HCC at study entry showed 
that the relative risk of HCC was 9.6 among men who were positive for hepatitis B 
surface antigen (HBsAg) alone and 60.2 among those who were positive for both 
HBsAg and HBeAg, as compared with men who were negative for both [17]. 
HBeAg seropositivity was also found associated with higher risk of early recurrence 
and poorer survival in patients after curative tumor resection [18]. With the routine 
application of HBV DNA quantification, HBeAg as a surrogate of HBV replication 
indicator is less utilized. The REVEAL-HBV study reported that the incidence of 
cirrhosis and HCC is positively and quantitatively correlated to the serum HBV 
DNA load in a cohort of 3653 participants with chronic HBV infection [19, 20]. 
Similar results were observed in a follow-up study among a prospective cohort of 
1006 patients with chronic HBV infection from Hong Kong [21].

2.2.2  �HBV Genotype

There are at least eight HBV genotypes (A–H), which display distinct geographical 
distributions [22]. Both genotypes B and C are prevalent in Eastern Asian areas. 
Infection with genotype C was reported to more likely result in severe liver disease, 
cirrhosis, and HCC than infection with genotype B [21, 23, 24]. However, a study 
from Taiwan reported that genotype B was associated with HCC in children with 
chronic HBV infection [25]. In Europe where genotypes A and D are dominant, 
infection with genotype D is associated with more severe liver disease or HCC than 
infection with genotype A [26].

2.2.3  �HBV Integration

HBV replicates through reverse transcription using its pregenomic RNA as tem-
plate. Progeny viral DNA in nascent capsids can be trafficked to nucleus to supple-
ment nuclear cccDNA pool, which constitutes a reservoir of templates for HBV gene 
expression and replication. Unlike retroviruses, chromosomal DNA integration is 
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not required for HBV replication. Nevertheless, DNA integration into the genomes 
of host hepatocytes likely contributes to oncogenesis by HBV.

HBV DNA integration in host chromosomes has been found in the majority (85–
90%) of HBV-associated HCC and probably occurs early during HBV infection 
[27, 28]. The genomic sites of HBV DNA integration appear random [27]. However, 
it is thought that HBV DNA integration into some specific genomic sites may allow 
the integrant-containing cells to obtain a growth advantage so that they may expand 
clonally. The integrated HBV DNA may induce chromosomal instability or alter the 
expression of host genes through cis-acting mechanisms. In addition, the integrated 
viral DNA may allow the continuous expression of viral oncoproteins such as HBx 
and truncated preS2/S proteins.

Recurrent HBV DNA integration occurs near actively transcribed gene-coding 
chromosomal regions, as well as within or near fragile genomic sites or repetitive 
regions, such as the Alu sequences and long interspersed nuclear elements (LINEs) 
[29–31]. Sequence analysis has revealed integration sites that are in the proximity 
of many genes involved in cell survival, proliferation, metabolism, and cell cycle 
regulation [29–31]. Among these genes, insertion of HBV DNA near the hTERT 
gene, encoding the catalytic subunit of telomerase, has been frequently found in 
HCC [29, 32]. The integration of HBV DNA into fragile genomic sites or repetitive 
regions may induce genomic instability or alter the expression of noncoding RNAs 
[33]. A HBV-human fusion transcript (HBx-LINE1) was reported to function as a 
long noncoding RNA (lncRNA) to influence the epithelial-mesenchymal transition 
and correlate with reduced patient survival and tumor formation in mice [34].

2.2.4  �HBV Mutations

The reverse transcriptase of HBV lacks of proofreading activity. As a result, muta-
tions are accumulated during chronic HBV infection and selected under the pres-
sure of host immunity and antiviral drugs during treatment. Due to the compact and 
overlapping properties of HBV genome, many mutations generate defective viruses. 
HBV mutations that have been identified to be associated with HCC are enriched in 
the basal core promoter (BCP)/preC region and the preS region.

Among the many mutations in the BCP/preC region, the most common one that 
is significantly associated with HCC development in genotypes B and C is the 
T1762 and A1764 double mutation (BCP double mutation) [35, 36]. The G1896A 
mutation in the preC region is a common HBV mutation that creates a premature 
stop codon that abolishes HBeAg translation. No association exists between the 
G1896A mutation and HCC development [37, 38]. Several other mutations in the 
BCP/preC region (C1653T, T1753V) may also be associated with HCC develop-
ment [38]. It is unclear how these mutations contribute to HCC development. Since 
the BCP/preC region contains essential HBV regulatory elements, these mutations 
may alter HBV gene expression and replication. In addition, because the HBx open 
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reading frame overlaps the BCP/preC region, some mutations may affect HBx 
expression or activity.

HBV mutants with point mutations, deletions, or insertions in the preS region 
have been frequently found in HCC [39, 40] and are associated with an increased 
risk of HCC [38, 39]. The preS mutations may alter the expression and secretion of 
HBV envelope proteins, resulting in intracellular accumulation of HBV envelope 
proteins, which can cause endoplasmic reticulum (ER) stress, leading to cell trans-
formation [41, 42].

2.2.5  �HBx Protein

The viral regulatory protein HBx contributes critically to HBV replication [43] and 
is thought to be closely related to HBV oncogenicity. It probably does not bind 
directly to DNA but rather acts on many cellular and viral promoters through 
protein-protein interactions. In the cytoplasm, HBx modulates multiple signaling 
pathways. These nuclear and cytoplasmic interactions result in the activation or 
repression of a large number of signaling pathways that play important roles in 
chromatin dynamics, DNA damage response, cell proliferation, viability, metabo-
lism and migration, angiogenesis, and immune response. However, precautions 
should be taken concerning HBx’s multiple activities. Due to the low-level expres-
sion of HBx during HBV infection and a lack of sensitive detection tools, many 
findings have been derived from in vitro HBx overexpression experiments and need 
to be verified in models that more closely mimic HBV infection and HBV-associated 
HCC.

HBx causes chromosomal instability by binding with different cellular proteins 
(Crm1, HBXIP, DDB1, p53, hBubR1) to dysregulate centriole replication, mitotic 
checkpoint, mitotic spindle formation, and chromosome segregation [44–47]. HBx 
promotes cell proliferation, viability, and migration through modulating multiple 
signaling pathways. HBx binds with p53 to impair p53-mediated apoptosis and 
checkpoint functions [48, 49]. HBx may upregulate TERT expression [50], but con-
flict results have been shown in HBx transgenic mice [51]. HBx induces CREB-
dependent transcriptional activation through interacting with the CBP/p300 
acetyltransferases and preventing CREB inactivation by PP1 phosphatase, resulting 
in expression of CREB-responsive genes involved in hepatocyte metabolism and 
proliferation [52, 53]. HBx can recruit DNMT3a DNA methyltransferase to sup-
press all-trans retinoic acid (ATRA)-mediated induction of p16 and p21 in HepG2 
and Hep3B cells via promoter hypermethylation, resulting in inactivation of retino-
blastoma protein [54]. HBx may promote cell migration and HCC cell invasive and 
metastatic capacity by increasing the expression of matrix metalloproteinase 3 and 
9 [55, 56] and epigenetically suppressing E-cadherin expression [57]. HBx can also 
block tumor necrosis factor-α-mediated apoptosis [58]. On the other hand, HBx can 
increase cellular reactive oxygen species (ROS) levels that lead to apoptosis by 
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promoting mitochondria membrane depolarization or Ca2+ accumulation in mito-
chondria [59, 60]. HBx may also promote stemness of HCC cells [61].

HBx has been shown to promote HCC angiogenesis. HBx was reported to upreg-
ulate the stability and transcriptional activity of hypoxia-inducible factor-1α 
(HIF1α) and the expression of vascular endothelial growth factor (VEGF) and 
angiopoietin 2 (ANG2), which leads to enhanced angiogenesis [62, 63].

2.2.6  �PreS/S Proteins

The PreS/S open reading frame of HBV uses alternative start codons for translation 
and encodes three envelope proteins (large, middle, and small) that share the 
226-amino-acid sequence of the small envelope polypeptide. The contribution of 
wild-type or mutant PreS/S proteins to HCC development is not fully understood. 
Wild-type large envelope protein accumulated in the ER of hepatocytes of trans-
genic mice could induce ER stress and consequently cause inflammation, hyperpla-
sia, and aneuploidy [64]. PreS2/S mutant proteins frequently found in HBV-associated 
HCC also accumulate in ER and may trigger a similar process [42], resulting in the 
upregulation of cyclin A that in turn promotes cell proliferation and chromosome 
instability [65, 66]. In addition, PreS2/S mutant proteins have been shown to tran-
scriptionally activate the TERT expression [67].

2.3  �Prevention

HBV-associated HCC can be prevented by vaccination against HBV infection. 
Vaccination of newborns against HBV has been incorporated into universal hepati-
tis B immunization programs of many countries and regions, which has greatly 
reduced the incidence of HCC in children [68]. Hepatitis B immune globulin 
(HBIG), in addition to hepatitis B vaccine, administered within 12–24 h after birth, 
has been shown to achieve 90–100% protective efficacy against perinatal transmis-
sion from mothers who are positive for HBsAg and HBeAg [69]. Recent studies 
showed that tenofovir treatment of HBeAg-positive mothers can successfully pre-
vent vertical HBV transmission [70, 71].

Antiviral therapy can significantly suppress HBV replication in chronic HBV 
patients. Studies with patients treated with lamivudine or adefovir have shown to 
help prevent HCC in patients with chronic hepatitis [72, 73]. Nevertheless, nucleos(t)
ide analogue therapy does not completely eliminate the risk of HCC [73]. The cur-
rent first-line anti-HBV drugs, namely, entecavir and tenofovir, have been shown to 
improve the prevention of HCC in responders with cirrhosis [74].
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2.4  �Conclusions

HCC will continue to be one of the major cancers worldwide as chronic HBV infec-
tion remains a public health threat. A great deal of knowledge has been gained on 
the epidemiologic features and pathogenesis of HBV-associated HCC in the past 
three decades. However, the oncogenic mechanisms of HBV and HBV-related risk 
factors are not fully understood, in large part owing to a lack of animal models that 
recuperate clinical HBV-associated HCC. Nevertheless, major breakthroughs have 
been achieved in the prevention of HBV-associated HCC with HBV vaccines and 
antiviral therapies. With the advances in HBV virology and pathology, there will be 
novel prophylactic and therapeutic means for HBV-associated HCC.
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